PyLinear
Release 0.92

Andreas Klockner

July 9, 2006

Division of Applied Mathematiccs, Brown University
Campus Box F, Providence, RI 02912, USA

Abstract

PyLinear provides a comprehensive and extensible envieomfor linear algebra in Python.

It is comprehensive in that it offers sparse and dense nestiof real and complex types, along with a full set of
operations on them.

It is extensible in that it can trivially be programmed in Fg, but it may just as trivially be extended in C++nix
programming in Matlab always sounded too cumbersome, Rdriprovides a refreshing new (and easy) perspective.
This allows a new type of hybrid numerical system, where performance-critical parts may remain in the high-level
language, while inner loops may be easily moved to C++.

There is no shortage of Python packages that provide maiice operations on them. Numerical Python, numarray
and the new NumPy (formerly SciPy Core) are good examplesieier, few of these packages focus exclusively on
Linear Algebra, and even fewer provide crucial tools for muical analysis, such as sparse matrices. PyLinear fills
this niche.

CONTENTS

L Introductionl 1
P Installatiod 3
R.1__Checkingprerequisites e 3
IZ.LI.DSIB.I.I.I.D.Q Boost Pvthtbn 4
S BIndidgs - . - . . . e 5
5

LAYS . o o v o e e e, 8

4.1 _TheQperat or ggggg@t ... 29
42 peratorsFormanAlgebla e e 29

M3 Tvpesofneratars v 30

I5__Numerics with Pyl ineal
5.1 Querying available functionality .
5.2 Matrix computatiohs

5.3 __Convenienthelpdrs

i6__Extending Pyl ineat
6.1 Implementing custom operatibns
6.2 Implementing custor@per at or $
[__Differences to NumPy and numarray
[A__Acknowledgements
[inde

33
33
34
34

35
35
35
37
39

41

CHAPTER
ONE

Introduction

This chapter introduces the PyLinear Python extension atlohes the rest of the document.

PyLinear is a set of extensions to the Python programmirguage which allows Python programmers to efficiently
manipulate matrices and vectors, the primary objects eélimlgebra. It allows real and complex arithmetic, cutyent
only in double precision. Dense as well as two types of spausgices are supplied, and a large variety of numerical
algorithms, from eigensolvers, to singular value decoritipos direct sparse solvers to sparse eigensolvers ape als
furnished as part of an ever-growing standard library.

PyLinear's programming interface is similar to that of Nuial Python and numarray to ease porting, but differs
in a few key aspects. The most notable such aspect is matitiptimation. While the termAx B in Numeric means
element-by-element multiplication, PyLinear changes thimean conventional matrix-matrix and matrix-vector-mul
tiplication, to match customary uses in scientific compmtand following the example of languages such as MAtlab
ChaptefY is dedicated to highlighting the differences leetwPyLinear and NumPy and its desecendents.

In very simple terms, PyLinear is a mapping of the operatogpbed by Boost.UBlas into Python using the
Boost.Python library. This has two implications that bakreach other. First, PyLinear is no speed demon. It
does have the right asymptotic complexity guaranteesdperations that ought to be linear-time in fact are). That's
the bad news. The good news is that since PyLinear is esbeatsripting language for Boost.UBlas, it is sheepishly
easy to convert a slow inner loop from Python into C++, withloging much abstraction: The matrix and vector types
as well as most operations are available in C++ with onlyhslygmore difficult syntax than in Python. But if that
is so, why would you want to use Python in the first place? Beeats high-level, safe and does not require the
sometimes lengthy compile times of C++. And you need to cdrmrdy that slow inner loop! Since you, too, can use
Boost.Python to bind that inner loop to Python (and still Bg&inear’s facilities), there’s no real need to move the
whole system into C++. That way, Python can be the conveamsafe prototyping language for large computation
systems written in C++.

1This has one important gotcha. Vector-vector multiplimat{also known as the dot product)rist associative, i.e. if;, b andc are vectors,
then typically(a - b) - ¢ # a - (b ¢). (Note that the type of the parenthesized expression iarsc&lyLinear will not reject code such asb+*c,
but its meaning is inherently undefined. Matlab gets arohiglimitation by introducing column and row vectors.

CHAPTER
TWO

Installation

This chapter helps you install PyLinear onto your computer.

2.1 Checking prerequisites

The first step in installing PyLinear is to make sure that yauehthe right software installed on your computer. You
will need the following:

« Python is of course the most important prerequisite. \@ergi.3 or newer will work.
You can find Python étt t p: // www. pyt hon. or g.

» The Boost libraries. Versions 1.33 and up work fine. SedBghwill help you with the installation of this
prerequisite.
You can find Boost et t p: // www. boost . or g

« The Boost Numeric library bindings. Sectignl2.3 will helpuywith this.
You can find the Boost Numeric bindingstatt p: / / news. t1 Ker. net/ sof t war e/ boost - bl ndi ngs.

» A good enough C++ compiler. GCC version 3.3 and up work fine.

GCC versions 4.0 and better will compile PyLinear using miess memory and generally much faster than
the older 3.x series. Using them is highly recommended. KNoteever that GCC 4.1 has a bug that affects
Boost.UBlas. (seatt p:// gcc. gnu. or g/ bugzi 1 I a/ showbug. cqi 71 d=28016)

GCC can be found @&ttt p: // gcc. gnu. or g.
Optionally, you may install the following libraries to augmt PyLinear’s functionality:

» TheBasic Linear Algebra Subprograms, better known as the BIAB. will not enable any new functionality
by itself, but is a prerequisite for many of the followinges.

You can find the original Fortran BLAS at t p: // net 11 b. or g/ bl as|. A good, generic implementation is
ATLAS ahttp:// math-atl as. st. net|
« TheLinear Algebra Package, better knownla#sPACK. This will enable a few extra operations on dense matr
ces, such as finding eigenvalues or the singular value degsitim.
You can find LAPACK @it t p: / / net 11 b. or g/ 1 apack. ATLAS now includes a LAPACK implementation.
« UMFPACK, which requires BLAS, provides an efficient direchar for linear systems involving sparse matri-
ces.

As of late, most major Linux distributions package UMFPACK fmart of a bigger package called UFsparse.
While this is (in my opinion) not such a great idea, it's a fdat PyLinear has to live with.

http://www.python.org
http://www.boost.org
http://news.tiker.net/software/boost-bindings
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=28016
http://gcc.gnu.org
http://netlib.org/blas
http://math-atlas.sf.net
http://netlib.org/lapack

Newer versions of PyLinear therefore default to using UEspabut will still run with just UMFPACK (and
COLAMD) installed.

Unfortunately, versions of the Boost Numeric Bindings ptio release 2006-04-30 (from the PyLinear’s au-
thor's web site) defaulted to using an include filenfpack/umfpack.h’, which is not possible within UFsparse,
where UMFPACK headers are typically installed undesr/include/ufsparse/umfpack.h’. The above-mentioned
release fixes this, but also requires you to mention the &ih o ‘umfpack.h’ in * siteconf.py’.

BIG FAT WARNING: If you get the Boost Numeric Bindings from G/ you will have to make this change
yourself.

You can find UMFPACK antt p: / / ww. c1 Se. uf | . edu/ r esear ch/ spar se/.

« ARPACK, which requires both BLAS and LAPACK, allows theisglof sparse eigenvalue problems.

If you are planning on using ARPACK, please also read aboeitthiis bug that might require you to patch
ARPACK in order to use PyLinear with ARPACK. (If you don'titsgou may get invalid results or inexplicable
crashes. Do yourself the favor.)

You can find ARPACK &it t p: / / www. caam r1 ce. edu/ sof t war e/ ARPACK/ .

« DASKR, a well-known package for solving Differential-Algeaic Equations, or DAESs for short. DAEs are a
generalization of Ordinary Differential Equations, or OPfer short.

This functionality is available as part of the toybox (seaftel®) for what the toybox is), but it's there if you
need it.

For ease of compilation, the DASKR source is packaged withiidar. To enable its use, simply go to the
subdirectory fortran/daskr’, type ./build.sh, watch for its successful completion and uncomment theultefa
options relating to DASKR insiteconf.py’.

You can find DASKR antt p: // netl1 b. or g/ ode.

PyLinear allows you to query at runtime which of these paekaaye available, see Sectlon]5.1.

2.2 Installing Boost Python

Installing the Boost libraries in a way that is suitable fgtPear is, unfortunately, a non-straightforward proceds
least if you are doing it for the first time. This section déses that process.

There is a bit of good news, though: If you are lucky enoughdaibing the Debian flavor of Linux or one of its
derivatives, you may simply typapti tude i nstall 1ibboost-python-dev and ignore the rest of this
section.

Otherwise, you must follow these steps:

* Download a Boost release.
* Download and install Boost.Jam, a build tool.

« Build Boost, such as by typing

bj am - sPYTHON_ROOT=/ usr - sPYTHON_VERSI ON=2. 4 \
-sBUI LD="rel ease <runtime-1ink>dynani ¢ <threadi ng>multi"

(You may have to adatYTHON_ROOT andPYTHON_VERSI ONdepending on your system.)

4 Chapter 2. Installation

http://www.cise.ufl.edu/research/sparse/
http://www.caam.rice.edu/software/ARPACK/
http://netlib.org/ode

« Check the directory

boost/ bi n/ boost/1i bs/ python/build/libboost_python. so...
...lgcclrel easel/ shared-1inkabl e-true/threadi ng-mul ti

and find libboost_python*.so’. (Don’t copy the dots—they are only there to make the lineffithis page.) Copy
these files to somewhere on your dynamic linker path, for gptam

— ‘“Jusr/lib’

— adirectory on LDLIBRARY _PATH

— or something mentioned iretc/Id.so.conf’.

You should also create a symbolic link calléidboost_python.so’ to the main ‘so’ file.

* Runldconfig.

2.3 Installing the Boost UBlas Bindings

This part is, fortunately, very easy. Just gohbt p: // news. ti ker. net/ soft war e/ boost - bi ndi ngs,
download the current snapshot and extract it somewherextomple by typing

tar xvfz boost-bi ndi ngs- NNNNNNNN. t ar . gz

Then remember the path where you unpacked it for the next step

If you get the Boost Numeric Bindings from CVS, please reaa shction on installing UMFPACK/UFsparse in
SectiorZ1L.

2.4 Installing PyLinear

As a first step, copy the filaiteconf-template.py’ to * siteconf.py’ and open an editor on that file. You will see a bunch
of variables that you may customize to adapt PyLinear to ygatem. First of all, there are a few variables that are
namedHAVE XXX, such asHAVE BLAS They all default td=al se. If you have the corresponding library available,
set that variable tdr ue.

For each library that you have answerBdue above, you may need to state in which directories to find tlaele
files (in XXXINCLUDE_DIRS), the libraries (inXXX LIBRARYDIRS) and finally, if the libraries are named in some
nonstandard fashion, you may also have to change the liheames to link against (KXX LIBRARIES. The defaults
work at least with Debian Linux.

These above instructions apply to all prerequisite lisrHere are a few hints for specific libraries:

» For Boost, seBOOSTINCLUDE_DIR to the directory where the root of your boost tree. Typigatiends
in ‘boost’. For BOOSTLIBRARYDIRS give the path where you put the bboost _pyt hon=. so files.
Finally, you should usually leave BPLIBRARIES unchanged and make a symbolic link frotibdoost -
python.so’ to the actual (non-symlink).so’ file.

* For the Boost bindings, just insert the path where you ukgadthem—No further installation is required.

« Here’s an extra trick for BLAS and LAPACK if you are using Dab: If you install lapack and blas, make sure
to install the versions ending in “3” (i.dal as3- dev andat | as3- dev), and also install &t | as3- ARCH-
dev”, whereARCH s your processor architecture. Debian will then autonadlfiactivate an accelerated BLAS
for your computer.

2.3. Installing the Boost UBlas Bindings 5

http://news.tiker.net/software/boost-bindings

Then, type

pyt hon setup. py build

and wait what happens. This will compile PyLinear, whictpeleding on your compiler, will take a little while. Once
this step completes, type

su -c¢ "python setup.py install"

As a final step, you may change into thest/’ subdirectory and execute
python test_matrices. py
This will execute PyLinear’s unit test suite. All tests shibtun fine, outputting a long line of dots and "OK” as the

last line of output.

Congratulations! You have now successfully installed Rghr.

6 Chapter 2. Installation

CHAPTER
THREE

The Arr ay types

This chapter decribes the basic array types provided byrigdrj and the elementary operations available
on them.

We're describing the modulgy!| i near . ar r ay. For simplicity, it is assumed to be imported using

>>> from pylinear.array inport =

in the examples.

3.1 Types and Flavors

First, let’s fix a bit of terminology.

From this point onwards, we will use the tednr ay to mean any type of matrix or vector. The telat ri x will
refer to matrices, both sparse and dense. The Yot or shall refer to only the dense vector type. Note that these
do not exist as actual Python classes, but we will pretertdtiies do.

In PyLinear, two things determine & r ay type: theflavorand thedata type(or dtypefor short).
The supported data types are

« double precision (i.e. 64-bit) real, and

« double precision (i.e. 2x64-bit) complex.
The supported flavors are

* dense vector,

* dense matrix,

sparse build matrix, and

* Sparse execute matrix.

There is only one vector flavor, but there are three diffeflaabrs of matrices with different performance and memory
characteristicsDensematrices storen-by-n elements in a two-dimensional grid wfrows andn columns. They are
used for small matrices or those which have mostly non-Zerments. Contrast this with the sparse types, which are
typically used for matrices consisting of mostly zero elatseSparse buildnatrices store their elements a list of *,

j, a[i,j])’, towhich new elements are simply appended, which is vesy. fhis list is typically unsorted, but
may have to be sorted byandj for multiplication, element access or element removal clvimakes these operations

pretty slow. Consequently, this flavor is typically usedthoe assembly of large sparse matrices. It is then converted
to thesparse executftavor for fast matrix multiplication. This flavor uses a sfand compressed column format for
fast linear algebra operations.

Each of the flavors is represented by a symbolic constant:

Constant | Corresponding Flavor

Vect or The dense vector flavor.
DenseMat ri x The dense matrix flavor.

Spar seBui | dMat ri x The sparse build matrix flavor.

Spar seExecut eMat ri x | The sparse execute matrix flavor.
Likewise, each of the element types has its own symbolicteomns

Constant | Corresponding Element Type

Fl oat 64 The 64-bit real element type.

Conpl ex64 | The 2x64-bit complex element type.

Fl oat The machine-native C+doubl e element type. An alias fdfl oat 64.

Conpl ex The machine-native C+st d: : conpl ex<doubl e> element type. An alias faConpl ex64.

Despite a good bit of internal dissimilarity, PyLinear'sgramming interface attempts to be mostly compatible with
NumPy, which is the traditional (non-sparse) array packag®ython. So suppose you have some NumPy code that
you would like to run on PyLinear. That code likely has a liikel nport nunpy somewhere near the top. Then
you can try and saynport pylinear.array as nunpy, which should get you most of the way there.

3.2 Creating Arr ays

The following functions in the modulgy! i near . ar r ay permit the creation of nevxr r ays:

ar r ay(sequence, dtype=Nope
There are many ways to create arrays. The most basic oneuséhaf thear r ay function:

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do:

>>> a
array([1.2, 3.5, -1.0])

Thear r ay function takes several arguments — the first one is a Pythguesee object (such as a list or a
tuple). The optional argumeity pe specifies the element type of the matrix. If omitted, as ingkample
above, Python tries to find the best data type which can reptadl the elementsr r ay always creates dense
matrices or vectors, depending on tlimensionalityof the input data. (The dimension of the data is 1 for a list,
2 for a list of lists, and so on. 1-dimensional data will beented to vectors, 2-dimensional data to matrices.)

Since the elements we gave our example were two floats andteger, it chos€&l oat 64 as the type of the
resulting array. One can specify unequivocally thyge of the elements—this is especially useful when, for
example, one wants an array contains complex numbers evaghtall of its input elements are reals:

>>> array([1,2,3]) # reals are enough for 1, 2 and 3
array([1.0, 2.0, 3.0])

>>> array([1,2,3], dtype=Conpl ex64) # not the default type
array([(1+0j), (2+0j), (3+0j)])

>>> array([1,2,3+0j]) # sane effect

array([(1+0j), (2+0j), (3+0j)])

8 Chapter 3. The Arr ay types

Note that in NumPyar r ay takes a few more arguments, suclcapy, savespace, andshape. These are
not supported.

spar se(mapping, shape=None, dtype=None, flavor=SparseBuildMatr
This function creates a (not necessarily spalkéd)r i x of the givenshape, dt ype, andf | avor based on a
sparse representation of its entries. At present, it catneateVect or s. The sparse representation consists of
a dictionary of dictionaries, whose keys are the row indfoeshe outer dictionary, and the column indices for
the inner one.

If the shape parameter is unspecified, the shape is specified by the taxggsand column indices seen in
examining therappi ng. If the dt ype is unspecifieds par se uses the same logic dsit a to determine it.

>>> sparse({0:{4:17, 3:1+2j},3:{2:15}})
sparse({0: {3: (1+2j), 4: (17+0j)},
3: {20 (15+0j)}},
shape=(4, 5), flavor=SparseBuil dMvatri x)
>>> gparse({0: {4:17, 3:1+2j},3:{2:15}}, flavor=SparseExecuteMatri x)
sparse({0: {3: (1+2j), 4: (17+0j)},
3: {20 (15+0j)}},
shape=(4, 5), flavor=SparseExecuteMatri x)

asarr ay(seq, dtype, flavor=None
This function converts scalars, lists and tuples té\anay type, if possible. It passés r ays through, making
copies only to convert types. In any other cadeyaeEr r or is raised.

enpt y(shape, dtype=Float, flavor=None
enpt y creates ar\r r ay of the givenshape dtypeandflavor which is not initialized at all. With a little bit of
luck, it'll contain all zeros, but in general it may contaimighever garbage was in the chunk of memory that
theAr r ay now occupies. This is typically faster thaer os, especially for densar r ays.

If you do decide that you need tiAe r ay empty, callcl ear () oniit.
See theshape attribute in Sectiof 313 for information on tshapeparameter.

>>> enpty((2,5), Float) # ATTENTI ON: random gar bage
array([[-3.92715777576e-39, 6.3659873729e-314, 6.36598737438e-314,
6. 36598737438e- 314, 6.36598737438e-314],
[5.54176250076e+257, 2.80259807429e+262, 1.99389578315e- 313,
9. 89838462118e+169, 3.60739284523e-313]])

zer os(shape, dtype=Float, flavor=None
zer os creates arr r ay of the givenshape dtypeandflavor which is filled with zeros. See thehape
attribute in Sectiofi 313 for information on tisBapeparameter.

>>> zeros((2,5), Float)
array([[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]])

ones(shape, dtype=Float, flavor=None
ones creates aiv r ay of the givenshapedtypeandflavorwhich is filled with ones. See ttehape attribute
in Sectior 3B for information on th&hapeparameter.

>>> ones((3,7), Float)

array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.07,
[1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0]])

3.2. Creating Arr ays 9

eye(n, m=None, offset=0, dtype=Float, flavor=None
eye creates aht ri x of shapg n, m and the giverdtypeandflavor which is filled with zeros and has ones
on theof f set th super-diagonamis assumed identical toif it is None.

of f set may also be negative, thus pointing to a sub-diagonal.
If of f set is 0, you get am x m identity matrix.

>>> eye(4, 3, offset=1, dtype=Conpl ex)

array([[0j, (1+0j), 0],
[0f, 0j, (1+0j)],
[0f, 0j, 0],
[0j, 0j . 0j11)

tri (n, m=None, offset=0, dtype=Float, flavor=None
tri creates avatri x of shape(n, m and the giverdtypeand flavor which has ones on thef f set th
super-diagonal and below, and zeros elsewhere.

of f set may also be negative, thus pointing to a sub-diagonal.

>>> tri(4, 3, offset=1, dtype=Conpl ex)

array([[(1+0j), (1+0j), 0j],
[(1+0j), (1+0j), (1+0j)],
[(1+0j), (1+0j), (1+0j)],
[(1+0j), (1+0j), (1+0j)]1)

hst ack(tup)
Take a sequence of arrays and stack them horizontally to makegle array. All arrays in the sequence must
have the same shape along all but the second hstsack will rebuild arrays divided byspl i t.

>>> a = identity(3)[:,:2]

>>> a

array([[21.0, 0.0],
[0.0, 1.0],
[0.0, 0.0]1])

>>> hstack((a, 2xa, 3*a))

array([[21.0, 0.0, 2.0, 0.0, 3.0, 0.0],
[0.O, 1.0, 0.0, 2.0, 0.0, 3.07,
[0.O, 0.0, 0.0, 0.0, 0.0, 0.01])

vst ack(tup)

Take a sequence of arrays and stack them vertically to makgle array. All arrays in the sequence must have
the same shape along all but the first axist ack will rebuild arrays divided bywspl i t.

>>> a = identity(3)[:2]

>>> a

array([[21.0, 0.0, 0.0],

[0.0, 1.0, 0.0]])
>>> vstack((a, 2xa, 3*a))
array([[21.0, 0.0, 0.0],

[0.0, 1.0, 0.0],
[2.0, 0.0, 0.0],
[0.0, 2.0, 0.0],
[3.0, 0.0, 0.0],
[0.0, 3.0, 0.0]])

10 Chapter 3. The Arr ay types

3.2.1 Pickle support

Arrays also have efficient support for pickling. Pickling is a cenient way to store complicated data structures
in a platform-independent byte stream. Unless you need himeedable output, pickling makes an excellent way of
saving PyLinear arrays to disk.

As such, unpickling a previously pickledt r ay is another way to create one:

>>> x = array([[1,2,3],[4,5,6]])
>>> X
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> jnport pickle
>>> string_rep = pickle.dunps(x)
>>> jsinstance(string_rep, str)

True
>>> y = pickle.loads(string_rep)
>>> y
array([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])

Pickling also works on arbitrarily larger data structurésvbich Ar r ay s are only a part.

3.3 Accessing Ar r ay Properties

Once you've created a fedr r ays, you might want to query them about their properties, ssctheir data type or
shape.

shape
Reading theshape attribute gets the shape tuple, that is, a tuple of lengtlaleguthe array’s rank specifying

the dimensions of the matrix. For a vector, this is a singleontaining an integer, for a matrix, this is a pair
containing the number of rows and columns, in this order.

Assigning a value to thehape attribute will destructively resize the array.

>>> x = array([[1,2,3],[4,5,6]])
>>> x. shape

(2, 3)
>>> x. T. shape
(3, 2)

>>> x.shape = (4, 2)

>>> x # typically random garbage

array([[1.0, 2.0],
[4.0, 5.0],
[6.3659873729e- 314, 8.70018274296e-313],
[2.2424384485e-269, 1.91651066261e-313]])

dt ype
Reading thealt ype attribute gets the data type of the given matrix. Assigninglae to thedt ype attribute is
not supported.

3.3. Accessing Ar r ay Properties 11

>>> x = array([[1,2,3],[4,5,6]])

>>> x. dtype

pylinear. array. Fl oat 64

>>> x = array([[1+3j,2-4j,3],[4,5+1],6]])
>>> x. dtype

pylinear. array. Conpl ex64

flavor
Reading thé | avor attribute gets the flavor of the given matrix. Assigning auedb thef | avor attribute is
not supported.

3.4 Accessing Arr ay Data

PyLinear provides a multitude of ways to access and martipthe data contained in an array, the simplest of which
may be just accessing the elements one-by-one or in chunkigseribed in the next section.

3.4.1 Indexing

PyLinear supports indexing for reading and writing Anr ays, in nearly the same way as you might be used to it
from either Python sequences or Matlab matrices. This mbdeaess is quite power- and featureful, so let's go over
the possibilities one by one.

Mat r i x objects are indexed by 2-tuples, wher¥ast or s are indexed by single values. Like all indices in Python,
PyLinear’s indices are 0-based.

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])

>>> a

array([[1.0,
[4.0,
[7.0

>>> 3a[0, 2]

3.0

>>> a[0, 1:]

array([2.0, 3.0])

>>> v = array([1, 2, 3])

>>> v[1]

2.0

>>> v[1:]

array([2.0, 3.0])

2.0, 3.0
5.0, 6.0
8.0, 9.0

—_

1)

Negative indices count from the end of the respective dimoans

12 Chapter 3. The Arr ay types

>>> a = array([[21,2,3],[4,5,6],[7,8,9]])

>>> a

array([[1.0, 2.0, 3.0]
[4.0, 5.0, 6.0]
[7.0, 8.0, 9.0]

>>> a[-1, -2]

8.0

>>> a[-1, 1:]

array([8.0, 9.0])

>>> v = array([1,2,3])

>>> v[-1]

3.0

>>> v[-1:]

array([3.0])

Writing data to specific places i r ays is just as simple:

>>> a = array([[1,2,3],[4,5,6],[7.8,9]1)
>>> a[0,2] = 17

>>> a
array([[21.0, 2.0, 17.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])
>>> g[0:2,1:] = array([[17,18],[19,20]])
>>> a

array([[21.0, 17.0, 18.0],
[4.0, 19.0, 20.0],
[7.0, 8.0, 9.0]])

Row-wise Access

Indexing a matrix with a single value returns entire row¥east or s:

>>> a[0]

array([1.0, 17.0, 18.0])
>>> g[0].flavor

Vect or

Note the subtlety: If you specify just a column or row, you g&ect or . If you specify a one-element slice, you get
aMatri x:

>>> a[0: 1]

array([[21.0, 17.0, 18.0]])
>>> g[0:1].flavor

Mat ri x

The same logic, of course, goes for column-wise access:

3.4. Accessing Ar r ay Data 13

>>> a[:, 2]
array([18.0, 20.0, 9.0])
>>> a[:,2].flavor
Vect or
>>> g, 2: 3]
array([[18.0],

[20.0],

[9.01])
>>> a[:,2:3].flavor
Mat ri x

Write access is less picky in that respect:

>>> a[0] = array([1.41,3.14,2.71]) # wite as vector
>>> a
array([[1.41, 3.14, 2.71],

[4.0, 19.0, 20.0],

[7.0, 8.0, 9.0]])
>>> a[0] = array([[3.14,2.71,1.56]]) # wite as matrix
>>> a
array([[3.14, 2.71, 1.56],

[4.0, 19.0, 20.0],

[7.0, 8.0, 9.0]11)

Strides

Strides are supported, i.e[3: 9: 2] gives you the entries at indices 3, 5, and 7. Strides may &seepative:

>>> a
array([[3.14, 2.71, 1.56],
[4.0, 19.0, 20.0],

[7.0, 8.0, 9.0]])
>>> a[::-1]
array([[7.0, 8.0, 9.0],
[4.0, 19.0, 20.0],
[3.14, 2.71, 1.56]])

Unlike Python listsAr r ay s may not be resized using slice assignments. Like in thef&sitthon, yet unlike NumPy,
slices return copies, not views of the corresponding data.

Broadcasting

When assigning té\r r ays slices and/or subscripts, the right hand side of the assghmay have lesser rank than
the left hand side. In this case, the right hand sideasadcastacross the missing rank. Observe:

14 Chapter 3. The Arr ay types

ones((5,5))
ar ange(5)
>>> g[:,:] =

]
o

cooo0o
NN N NN

cooo0o
i
coooo

—_ e — — —
_—— -
~

coo0o0o
Wwwww

>>> af: 0

>>> a

array([[10.0, 10.0, 10.
[10.0, 10.0, 10.
[10.0, 10.0, 10.
[10.0, 10.0, 10.

[10.0, 10.0, 10.

10.0, 10.0],
10.0, 10.0],
10.0, 10.0],
10.0, 10.0],
10.0, 10.0]])

©coooo

The same trick works for vectors as well.

3.4.2 Picking Arr ays apart

The following operations return only parts of the data co@d in aAr r ay object:

Picking apart complex Ar r ays

real
Reading this attribute obtains a copy of the real part of ta&im For real matrices, the matrix is simply copied.

In NumPy, this method does not return a copy, but a view.

>>> x = array([[1+3j,2-4j,3],[4,5+1],6]])
>>> X
array([[(1+3)), (2-4j), (3+0j)],
[(4+0j), (5+1j), (6+0j)]1])
>>> X.rea
array([[21.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
i magi nary

Reading this attribute obtains a copy of the imaginary pitti® matrix. For real matrices, a zero matrix of the
same size is returned.

In NumPYy, this method does not return a copy, but a view.

>>> x = array([[1+3j,2-4j,3],[4,5+1j,6]])
>>> X
array([[(1+3j), (2-4j), (3+0j)],
[(4+0)), (5+1j), (6+0j)]])
>>> X. i magi nary
array([[3.0, -4.0, 0.0],
[0.O, 1.0, 0.0]])

3.4. Accessing Ar r ay Data 15

Getting Noncontiguous Parts of an Ar r ay

t ake(matrix, indices, axis=p
Assembles a\r r ay from the entries of thé\r r ay listed inindices which must be simple numbersxis
specifies the axis along which the indices are taken.

Next, we will discuss a few functions that return just paftd/at r i x objects.

hspl i t (ary, indicesor_section}
Split a singleMvat r i x array into multiple subivat r i x instances. The array is divided into groups of columns.
If i ndi ces_or _secti ons is an integerary is divided into that many equally sized sub-arrays. Ifitis
impossible to make the sub-arrays equally sized, the dpartitrows a ValueError exception.

>>> a = array([[1,2,3],[4,5,6]])

>>> a
array([[21.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
>>> hsplit(a. T, 2)
[array([[1.0],
[2.0],
[3.0]]), array([[4.0],
[5.0],
[6.0]])]

>>> hsplit(a, [1])
[array([[1.0],
[4.0]]), array([[2.0, 3.0],
[5.0, 6.0]])]
>>> hstack(hsplit(a, [1])) == a
True

vspl it (ary, indicesor_section¥
Split a singleMat ri x array into multiple subivat r i x instances. The array is divided into groups of rows.
If i ndi ces_or _secti ons is an integerary is divided into that many equally sized sub-arrays. Ifitis
impossible to make the sub-arrays equally sized, the dpartitrows a ValueError exception.

>>> a = array([[1,2,3],[4,5,6]])
>>> a
array([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
>>> ysplit(a, 2)
[array([[21.0, 2.0, 3.0]]), array([[4.0, 5.0, 6.0]])]
>>> vsplit(a, [1])
[array([[21.0, 2.0, 3.0]]), array([[4.0, 5.0, 6.0]])]
>>> vstack(vsplit(a, [1])) ==
True

di agonal (matrix, offset=0
Returns the diagonal ahatrix as a vector, or theffseth super- (forof f set >0) or sub-diagonal (for
of f set <0).

>>> a =
array([[1,2,3],[4,5,6]]) >>> a >>> diagonal (a) >>> di agonal (a, 1)

3.5 Basic Array Math

In this section, we will discuss how to perform basic caltoles withAr r ay objects.

16 Chapter 3. The Arr ay types

To begin with Ar r ay s support the usual range of algebraic operators, suehtas and/ . For the additive operators,
this is straightforward, as the standard elementwise megapplies. The multiplicative operators, on the other hand
acquire different meanings depending on the types of tlgirraents, such as matrix or dot products. The details can
be found iINC3I5R. Despite the default “complicated” megroh multiplication, elementwise multiplication is also
available, as is a host of other elementwise operationd3&der details.

PyLinear also supplies a large number of more advancedxymatcedures. These are described in Chdpter 5.

3.5.1 Generalities on Binary Operations

Ar r ays provide all the operators you would expect, like sumsedifices, products and such. There are, however, a
couple of fine points that are worth noting:

Type promotion

If binary operators or elementwise functions (see SeElifpae applied to arrays of non-matching flavor or dtype, the
operands are promoted to a common type. (For the case of atehimg dimension, see Secti@f for broadcasting
rules.)

If the only mismatch is in dtype, one argument array is castard in the type hierarchy (e.g. from integer to real,
from real to complex) in order to match the other.

>>> a = array([[1,2],[0,1]])
>>> b = ones((2,2)) *» 1j

>>> g, dtype

pylinear. array. Fl oat 64

>>> b. dtype

pyl i near. array. Conpl ex64
>>> (a+h).dtype

pyl i near. array. Conpl ex64

If there is also a mismatch in flavor, the result assumes thierfta the first operand:

>>> a = ones((3,3))
>>> b = ones((3,3), flavor=SparseBuil dMatri x)
>>> a+b
array([[2.0, 2.0, 2.0],
[2.0, 2.0, 2.0],
[2.0, 2.0, 2.0]])
>>> p+a
sparse({0: {0: 2.0, 1: 2.0, 2: 2.0},
1. {0: 2.0, 1: 2.0, 2: 2.0},
2: {0: 2.0, 1: 2.0, 2: 2.0}},
shape=(3, 3), flavor=SparseBuil dwvatri x)

Broadcasting

The binary elementwise operators as well as all the binamehtwise functions (see Sectlonl3.6) accept argument
pairs where one argument has lesser rank than the other.isliegbe, the missing ranks aeoadcastacross the
remainder of the matrix. If the lesser-rank argument is éascthis is easy to explain: It is treated like an array of the

3.5. Basic Array Math 17

right size filled with that scalar. If it is a vector, that vects treated like a matrix filled with rows consisting of the
given vector.

>>> a = ones((4,4))

>>> b = arange(4)

>>> a

array([[21.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]1])

>>> b

array([0.0, 1.0, 2.0, 3.0])

>>> pb+5

array([5.0, 6.0, 7.0, 8.0])

>>> a+b

array([[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0]])

>>> a+b+5

array([[6.0, 7.0, 8.0, 9.0],
[6.0, 7.0, 8.0, 9.0],
[6.0, 7.0, 8.0, 9.0],
[6.0, 7.0, 8.0, 9.0]1])

3.5.2 Multiplicative (and related) Operators

This section explains the value of the expresaion, where at least one afandb is anAr r ay. Since multiplication
is probably the most significant element of linear algebdrard’s quite a bit to know here. Also, we will touch upon
other related notions such as outer, inner and Kroneckelugte as well as inversion and exponentiation.

If the one operand in the expressanb is a scalar (it doesn’t matter which), the result will be th@entwise product
of the array with that scalar.

>>> a = array([[1,2,3],[4,5,6]])
>>> gx 2
array([[2.0, 4.0, 6.0],
[8.0, 10.0, 12.0]1])
>>> 2j*a
array([[2j, 4, 6j],
(8, 10j, 12j]])

If both operands ar¥ect or s, a* b computes the inner product of both vectors. Note that in trepdex case no
complex conjugates are taken. If you require them, use thieesegiora* b. H. WARNING This notation is convenient,
but slightly dangerous, mathematically. The inner prodiictimply written as a “dot product”, imot associative,
meaning that for vectors, b andc, typically (a - b) - ¢ # a - (b- ¢). PyLinear has no way of rejecting unparenthesized
expressions such as bx ¢, but their meaning is uncertain since the order of evalaatmot explicitly specified.

18 Chapter 3. The Arr ay types

>>> a = array([1, 2, 3])

>>> b = array([4,5,6])

>>> c = array([7,8,9])

>>> (axb)*c

array([224.0, 256.0, 288.0])
>>> ax(b=*c)

array([122.0, 244.0, 366.0])
>>> axbxc # RANDOM RESULT!
array([224.0, 256.0, 288.0])

If aisaVect or andb is aMat ri x, ax b will result in b a, using the conventional matrix-vector product.

If aisaMatri x andb is aVect or, a*b will result in ab, using the conventional matrix-vector product.

>>> a = array([[21,2,3],[4,5,6],[7,8,9]])
>>> b = array([1,3,5])

>>> a*b

array([22.0, 49.0, 76.0])

>>> b*a

array([48.0, 57.0, 66.0])

>>> a.T+b # |l ess efficient!

array([48.0, 57.0, 66.0])

If both a andb areMat r i x types,a* b will result in ab, using the conventional matrix-matrix product.

)

>>> a = array([[1,2,3],[4,5,6]]
- [1.2 4,3,4],[5,6,5,6]])

[4,
>>> b = array([,1,2],[3,
>>> a*b
array([[22.0, 28.0, 22.0, 28.0],
[49.0, 64.0, 49.0, 64.0]])

All these explanations also apply to the inplace multiglarxaoperator =.

All multiplication operators obey type promotion rules aillout in Sectior??.
Related operators
The following operators are not invokedash, but are still related to multiplication:

e matrixxxn
Computes thath power ofmatrix. n must be integer, but may be negative. Only for dense matrices

3.5. Basic Array Math

>>>a = array([[1,2,3],[3,2,1],[1,3,2]])

>>> a

array([[1.0, 2.0, 3.0],
[3.0, 2.0, 1.0],
[1.0, 3.0, 2.0]])

>>> gax*2

array([[210.0, 15.0, 11.0],
[10.0, 13.0, 13.0],
[12.0, 14.0, 10.0]]

>>> a*x* 3

array([[66.0, 83.0, 67.0],
[62.0, 85.0, 69.0],
[64.0, 82.0, 70.0]]

>>> ax*x3 * (1/a)

array([[210.0, 15.0, 11.0],
[10.0, 13.0, 13.0],
[12.0, 14.0, 10.0]]

e scalar/matrix
Computes thecalarmultiple of the inverse ofnatrix. Only for dense matrices.

Do not use code lik&/ a* b to solve the linear systema = b; besides being slow, this tends to yield imprecise
results. Instead, use tk&sol ve>> pseudo-operator.

Use of this operator will fail unless the modudg! i near . oper at i on is available.

>>>a = array([[1,2,3],[3,2,1],[1,3,2]])

>>> a

array([[1.0, 2.0, 3.0],
[3.0, 2.0, 1.0],
[1.0, 3.0, 2.0]])

>>> 1/a

array([[0.0833333333333, 0. 416666666667, -0.333333333333],
[-0.416666666667, -0.0833333333333, 0.666666666667],
[0.583333333333, -0.0833333333333, -0.333333333333]])
>>> 1/a * a

array([[1.0, 8.32667268469e-17, 4.16333634234e-17],
[-4.16333634234e- 17, 1.0, -1.2490009027e-16],
[5.55111512313e-17, 0.0, 1.0]1)

Observe that the results are likely useless if the matriinigdar:

Chapter 3. The Arr ay types

>>>a = array([[1,2,3],[4,5,6],[7,8,9]])

>>> a

array([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])

>>> 1/a

array([[3.15221190597e+15, -6.30442381193e+15,
[-6.30442381193e+15, 1.26088476239e+16,
[3.15221190597e+15, -6.30442381193e+15,
>>> 1/a * a
array([[3.0, 3.0, 3.0],
[-1.0, -2.0, -3.0],
[-2.5, -2.0, -1.5]])
>>> from pyl i near. conmputation inport determ nant
>>> det erm nant (a)
-9.51712667008e- 16

e matri x <<sol ve>> vector

3.15221190597e+15] ,
-6.30442381193e+15] ,
3.15221190597e+15])

Returns the solution of the linear system of equatimatr i x*x=vect or . Available for dense and sparse

execute matrix types ahatrix.

Use of this operator will fail unless the moduydg! i near . conput at i on is available.

Since this is not built using actual Python syntax, but nattteeaply composed of a special-purpesd ve
object with left and right shift operators, some care needsetexercised regarding operator precedence. When

in doubt, just use parentheses.

>>> a = array([[21,2,3],[3,2,1],[1,3,2]])
>>> b = array([9,1,1])

>>> v = a <<solve>> b

>>> v

array([0.833333333333, -3.16666666667, 4.83333333333])

>>> a * Vv
array([9.0, 1.0, 1.0])

Note that you need to qualifg<sol ve>> with the module name if you do not impgey! i near . ar r ay

usingfrom... inport ="

>>> jnport pylinear.array as num

>>> a = numarray([[21,2,3],[3,2,1],[1,3,2]])
>>> b = numarray([9,1,1])

>>> vy = a <<num sol ve>> b

>>>

array([0.833333333333, -3.16666666667, 4.83333333333])

>>> a * Vv
array([9.0, 1.0, 1.0])

Observe that the results are likely useless if the matriinigudar:

3.5. Basic Array Math

21

>>> a = array([[21,2,3],[4,5,6],[7,8,9]])
>>> b = array([9,1,1])

>>> v = a <<solve>> b

>>> v

array([2.52176952477e+16, -5.04353904954e+16, 2.52176952477e+16])
>>> a * Vv

array([0.0, 0.0, -32.0])

>>> from pyl i near.conmputation inport determn nant

>>> det erm nant (a)

-9.51712667008e- 16

e vectorl <<outer>> vector?2
Computes the outer productwéct or 1 andvect or 2, whose result is the matrix - v3 .

>>> v array([1,2,3])
>>> w = array([3,2,1])
>>> vy <<outer>> w
array([[3.0, 2.0, 1.0]
[6.0, 4.0, 2.0]
[9.0, 6.0, 3.0]
>>> w <<outer>> v
array([[3.0, 6.0, 9.0]
[2.0, 4.0, 6.0]
[1.0, 2.0, 3.0]

)
, 1)

Please see the section easol ve>> above for important considerations on operator precedamd¢enodule
gualification that also apply here.

e vectorl <<cross>> vector?2

Computes the cross productwoéct or 1 andvect or 2. Bothvect or 1 andvect or 2 must be of dimension
2 or 3. For dimension 2, the component of the corresponding 3-dimensional cross ptddueturned as a
scalar.

>>> v array([1,2,3])
>>> w = array([3,2,1])
>>> Vv <<Cross>> w
array([-4.0, 8.0, -4.0])
>>> W <<CrO0SS>> V
array([4.0, -8.0, 4.0])
>>> (v <<Cross>> w) * v
0.0

Please see the section easol ve>> above for important considerations on operator precedamd¢enodule
gualification that also apply here.

ematri x1 <<kron>> matri x2

Computes the Kronecker product (sometimes called the tgmeduct) ofrmat ri x1 andmat ri x2:

allB alnB
A®B = :

am1B - amnB

Chapter 3. The Arr ay types

>>>v = array([[1,4],[4,8]])

>>>w = array([[1,2],[2,1]])

>>> v <<kron>> w

array([[21.0, 2.0, 4.0, 8.0],
[2.0, 1.0, 8.0, 4.0],
[4.0, 8.0, 8.0, 16.0],
[8.0, 4.0, 16.0, 8.0]])

Please see the section gasol ve>> above for important considerations on operator precedamdenodule
gualification that also apply here.

XXX Is outerproduct documented?

3.6 Elementwise Functions

PyLinear sports a few so-calldelementwise Functionssome of which arainary, while others arevinary. (In
NumPy, this kind of function is called a ufunc, or “Univergainction”.) Elementwise functions generally apply a
certain functionality to each element in an array. For examtbesi n elementwise function computes the sine of
each of the given array’s entries, and returns the procassdrik, which will be of the same size, flavor, and dtype.
Binary elementwise functions receive twor ays of equal size as arguments, apply a binary function (sucfoas
example, addition or multiplication) to each pair of erdrad the twoAr r ay s, pairing the entries at the same location
in eachAr r ay, and return arr r ay with the results. Binary elementwise functions obey typenpotion laws as
laid out in sectior??.

The following unary elementwise functions exist:

conj ugat e(array)
Returns the complex-conjugate of the givarr ay. Simply copies real matrices.

cos(array)
Returns the elementwise cosine of the givem ay .

cosh(array)
Returns the elementwise hyperbolic cosine of the givenay .

exp(array)
Returns the elementwise natural exponential of the giveray .

WARNING:This is not matrix exponentiation.

| og(array)
Returns the elementwise natural logarithm of the gikenay.

| 0g10(array)
Returns the elementwise base-10 logarithm of the giremay .

si n(array)
Returns the elementwise sine of the givemn ay.

si nh(array)
Returns the elementwise hyperbolic sine of the gikenay .

sqrt (array)
Returns the elementwise square root of the gikenay.

t an(array)
Returns the elementwise tangent of the gikem ay.

3.6. Elementwise Functions 23

t anh(array)
Returns the elementwise hyperbolic tangent of the givenay .

fl oor (array)
Returns the elementwise floor of the givanr ay.

cei |l (array)
Returns the elementwise ceiling of the givarr ay.

ar gunent (array)
Returns the elementwise complex argument of the genay. Resulting matrix consists of values of zero
andr for real matrices.

absol ut e(array)
Returns the elementwise absolute value of the ghenay .

The following binary elementwise functions exist:

add(opl, op2
Returns the elementwise sum of the giverr ays. Obeys broadcasting (see Secti#) and type promotion
(see Sectior??) laws.

Equivalent to ther operator.

subtract (opl, opl
Returns the elementwise difference of the givem ays. Obeys broadcasting (see Secti@hand type promo-
tion (see Sectio??) laws.

Equivalent to the operator.
mul tiply(opl,opl

Returns the elementwise product of the givem ays. Obeys broadcasting (see Sec@hand type promotion
(see Sectior??) laws.

NOTequivalent to the operator, except in the scalar case.
di vi de(opl, opl

Returns the elementwise quotient of the givem ays. Obeys broadcasting (see Secf2@hand type promotion
(see Sectior??) laws.

NOTequivalent to thé operator, exceptin the scalar case.
power (opl, op2

Returns the elementwise powepl[i]**op2[i] of the givenAr r ays. Obeys broadcasting (see Section
?7?) and type promotion (see Secti@f) laws.

NOT equivalent to the * operator, except in the scalar case.
maxi mun(opl, opd

Returns the elementwise maximum of the givem ays. Obeys broadcasting (see Sectt@hand type promo-
tion (see Sectio??) laws.

For complex matrices, the maximum is found based on the egal p
mi ni mum(opl, op2

Returns the elementwise minimum of the givarT ays. Obeys broadcasting (see Sectt®hand type promo-
tion (see Sectiof??) laws.

For complex matrices, the minimum is found based on the @l p

Additional elementwise function methods, suchrasluce, as they are found in NumPy, are not (yet) supported in
PyLinear.

24 Chapter 3. The Arr ay types

3.6.1 Linear Algebra

The following operations are related to the theory of linglgebra.

T
This object property a real-transpose copy of the matrix.
Does not exist in NumPy.

>>> x = array([[1,2,3],[4,5,6]])
>>> X
array([[21.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
>>> x. T
array([[21.0, 4.0],
[2.0, 5.0],
[3.0, 6.0]])
H

This object property returns a conjugate-transpose coftyeofatrix. Identical ta for real matrices.
Does not exist in NumPy.

>>> x = array([[1+3j,2-4j,3],[4,5+1],6]])
>>> X
array([[(1+3j), (2-4j), (3+0j)],
[(4+0j), (5+1j), (6+0j)]])
>>> X, H
array([[(1-3j), (4-0
[(2+4]), (5-1
[(3-0j), (6-0

~— — —

t r ace(matrix, offset=0
Returns the sum of thaffseth diagonal. Sedi agonal for details of the meaning afffset

>>> a = array([[1,2,3],[4,5,6]])

>>> a

array([[1.0, 2. 1,
[4.0, 5.0, 11)

>>> trace(a)

6.0

>>> trace(a, 1)

8.0

0, 3.0
0, 6.0

3.7 Flavor-specific Functionality

The following methods tie into the particulars of the sparsgrices’ memory layouts.

sort ()
The list of (4, j, a;, ;) stored by aSpar seBui | dMvat ri x can become unsorted, depending on the order of
insertions into the matrix. This is rectified by ther t method. During normal usage, you don’t have to worry
about sorting your matrices, since this action is triggenematically whenever it is necessary.

set _el ement (i,], entry)
Sets the entry in thigh row andjth column to the valuentry.

Why would you want this if you could easily s&éf i ,j] = entry? This method is guaranteed to be an
O(1) operation if it is available, whereas the alternatietation will always work, but may be exceedingly

3.7. Flavor-specific Functionality 25

slow. (Consider the case of3par seExecut eMat ri x, which might have to perform a@(n?) move to
accomodate a new element.)

Available on all butSpar seExecut eMat r i x objects.

set _el ement _past _end(i,], entry)

Sets the entry in thih row andjth column to the valuentry. If used, the user guarantees that forkall- 7,
A, =0forallland thatd, ; = 0 for{ >= j.

Why would you want this if you could easily s&éf i ,j] = entry? This method is guaranteed to be an
O(1) operation if it is available, whereas the alternatigtation will always work, but may be exceedingly slow.
(Consider the case ofgpar seBui | dvat ri x, which might have to be resorted.)

add_el enent (i, j, numbe)

Addsnumberto the entry in theth row andjth column.

Why would you want this if you could easily sa@['i ,j] += entry’? This method is guaranteed to be
an O(1) operation if it is available, whereas the altermatiotation will always work, but may be exceedingly
slow. (Consider the case of$par seExecut eMat ri x, which might have to perform a@(n?) move to
accomodate a new element.)

Available on all butSpar seExecut eMat r i x objects.

conpl et e_i ndex1_dat a()

This is a rather internal method, but it is explained hereatiogiess.

TheSpar seExecut eMat ri x class uses a list to indicate the column starts in a lineat éihumbers. This
list of column starts, in its original state, is usually imgplete, i.e. does not cover all rows, which allo@§l)
insertion at the end of the number field. This method makes that the column start list is complete. This
is required by certain third-party sparse matrix libratteet directly read the structure of your sparse matrices.
Within PyLinear, UMFPACK is one such example. Its wrappeaisthis method automatically, however, so that
you don't have to worry about this here. But if you are bindiagther sparse matrix libraries, this call might
come in useful.

3.8 Matrix algebra

3.9 Simple computational routines

The following methods are available on PyLinedsr ay types:

sum()

The summethod returns the sum of all non-zero array elements. \8dyion-zero” sounds stupid, but it
actually means that for sparse arrays, only non-zero elenaga considered, and thus represents a guarantee
with respect to asymptotic complexity of the operation.jures the sum of all elements in the array.

>>> x = array([[1,2,3],[4,5,6]])
>>> x. sum()

21.0

>>> v = array([1, 2, 3])

>>> v.sum()

6.0

_iter__()

ForMat ri x types, this method returns an iterator whose consecutivesare the rows of the matrix. Note
that this method always returnglansevect or , so it can be slow to use for sparse matrices.

ForVect or s, this method returns an iterator whose consecutive vaigethe entries of the vector.
This method is implicitly called itfi or loops:

26

Chapter 3. The Arr ay types

>>> x = array([[1,2,3],[4,5,6]])
>>> for rowin Xx:
print row

array([1.0, 2.0, 3.0])
array([4.0, 5.0, 6.0])
>>> x = array([1,2,3])
>>> for entry in x:
print entry

LN
coco-

i ndi ces()
This method works like th&eys() method on a dictionary: It returns an iterator whose valaie all indices
of the Ar r ay for which the corresponding value is potentially non-zdiidat is, for dense matrices, it returns
each element’s index, while for sparse matrices, only renao-glements are enumerated.)

>>> x = sparse({0:{4:17, 3:1+2j},3:{2:15}})
>>> for index in x.indices():
print index

(0. 3)
(0. 4)
(3 2)

add_scat t er ed(row.indices, columrndices, little matrix)
Modifies the called matrix in-place by adding a the entriesldfle_matrixto the already present entries, where
the affected rows and columns are giverrtwy_indices columnindices

>>> a = zeros((10,10), Float, SparseBuildMatri x)
>>> b = array([[1,2],[3,4]])

>>> a.add_scattered([4,8], [1,3], b)

>>> a

sparse({4: {1: 1.0, 3: 2.0},
8: {1: 3.0, 3: 4.0}},
shape=(10, 10), flavor=SparseBuil dMatri x)

This operation is common in finite element codes.

copy()
Returns an identical copy of the matrix.

>>> a = array([1, 2, 3])
>>> b = a.copy()

>>> b[0] = 15

>>> a

array([1.0, 2.0, 3.0])
>>> b

array([15.0, 2.0, 3.0])

sol ve_upper (vectop
If the matrix is an non-singular upper triangular matrixertha vectorr esul t is returned that satisfies
mat ri x*r esul t =vect or , i.e. this routine solves the linear system given by the imatr

If the matrix is not regular upper triangular, then the resilthis routine is still a vector, but of undefined
meaning.

3.9. Simple computational routines 27

>>> a = array([[21,2],[0,3]1)
>>> b = array([17,12])

>>> v = a.sol ve_upper(b)

>>>

array([9.0, 4.0])

>>> gy

array([17.0, 12.0])

sol ve_I| ower (vectol
If the matrix is an non-singular lower triangular matrix,etha vectorr esul t is returned that satisfies
mat ri x*r esul t =vect or , i.e. this routine solves the linear system given by the ixatr

If the matrix is not regular upper triangular, then the resilthis routine is still a vector, but of undefined

meaning.
>>> a = array([[1,0],[3,4]])
>>> b = array([17,12])
>>> v = a.solve_l ower(b)
>>>
array([17.0, -9.75])
>>> axV

array([17.0, 12.0])

28 Chapter 3. The Arr ay types

CHAPTER
FOUR

Matrix-Free Methods

This chapter introduces the notion of @aer at or , which is PyLinear’s way of expressing matrix-free
methods.

4.1 The Oper at or concept

Everything that has to do wit@per at or instances is contained in the moduydg! i near . oper at or. Let’s
import it:

>>> from pylinear.array inport =
>>> jnport pylinear.operator as op

classQper at or
An Oper at or is a (typically linear) mapping of one vector to another. Atrixais a particularly prominent
example of this, bu©per at or s are mainly used to represent vector-to-vector mappingsiiach no matrix
is explicitly stored (or too expensive to compute expljoitﬂ

Given its single purpose, dper at or has a pretty simple interface:

shape
Returns a tuplé h, w) , which, in analogy to &kt r i x, specifies the sizes of the vectors received and returned
by theOper at or .

t ypecode()
Returns the typecode (sSE€I3.1) of Wect or s that thisOper at or operates on. This is also the typecode of
theVect or s returned by the operations of tlilper at or . For technical reasons, the two always match.

app! y(before, aftey
This method operates on thect or bef or e and returns the result of the operatioraifit er . af t er needs
to be a properly-sizedect or . Its initial values typically do not matter, but may be ussdstarting guesses,
for example by iterative solvers. Initializing after to aéiroes is always acceptable.

4.2 (Operat or s Form an Algebra

On top of the simple interface of @&per at or , PyLinear provides a layer of convenience functions thaitifate the
creation of derived instances.

For anOper at or A, sayingA(x) with a properly sized and type¢ect or x will return the result of applyiné to
X, by calling theappl y method described above.

1 Note, however, that for technical reasdvist r i x classes are not automaticalper at or instances—they need to be explicitly made into
these, as we will see soon.

29

For twoQper at or sA andB, you may writeA+B to obtain anQper at or mapping that will perform the operation
A(x) +B(x) . The operator works in an analogous fashion.

For two Oper at or s A andB, you may writeAx B to obtain anOper at or mapping that will perform the com-
posed operatioA(B(x)) . You may also sag* B or B*a with anOper at or B and a scalaa, and will obtain an
Qper at or that performsa* B(x) . A unary minus A returns the negated operator.

4.3 Types of Operators

Matrix-generated operators are the most obvious kinGpafr at or , but there are more—and they do not necessarily
correspond to a stored matrix representation.

Each type of operator comes with a constructor class. Fanphka matrix operators are constructed by calling the
methodmak e on the object calleatrixOperatorin theoper at or module. Consider this example:

>>> a = array([[1,2],[3, 4]])

>>> a_op = op. Matri xQper at or. nake(a)
>>> v = array([5, 6])

>>> axV

array([17.0, 39.0])

>>> a_op(V)

array([17.0, 39.0])

>>> a plus_a _op = a_op+a_op

>>> a_plus_a_op(Vv)

array([34.0, 78.0])

>>> four_a_op = 2xra_op + a_plus_a_op
>>> four_a_op(v)

array([68.0, 156.0])

classMat ri xQper at or
A Mat ri xQper at or makes a matrix into a@per at or .

nmak e (matrix)
This static method takes a matrix argument and returns axogterator of the corresponding type.

It does not make a copy of the matrix, instead, it just keegfexrence to the given matrix around.

Now that you have seen one constructor class, you have basiean them all, as they are basically structured in the
same way. What is going to vary from here on down is

* the name of the constructor class and

« the arguments of themke call.

Note however that for technical reasons the instance retlispnak e is not an instance of clasdat r i xQper at or ;
in fact,Mat r i xQper at or is not even technically a class.

So, let’s dive right in. The next best thing past applyinghaér operator directly is applying its inverse. Here areesom
operators to achieve that. Of course you could always coenivetinverse of the matrix that generates the operator.
There are better ways, however. The simplest one ik thewver seQper at or :
classLUl nver seQper at or
A LUl nver seQper at or operates on vectors as the inverse of the dense matrix itnistrewted for, by
computing a LU decomposition.

mak e (matrix)
Returns arOper at or whose effect on a vector id—!, if A is the givermatrix.

30 Chapter 4. Matrix-Free Methods

This is a static method.

However, for sparse matrices, computing the plain LU deamsitipn is rarely feasible. More finesse is required to
maintain the sparseness, and thus the tractability, of pleeadion. That kind of finesse is provided by UMFPACK,
which is also wrapped in a@per at or interface in PyLinear.
classUMFPACKOper at or

A UMFPACKOper at or operates on vectors as the inverse 8par seExecut eMat ri x given to it.

Unlike theCGOper at or and theBi CGSTABOper at or, it does not perform an iterative, but rather a direct
method. Upon construction, it computes a sparse LU-likeodgmsition to make actual solving an efficient
process.

mak e (matrix)
Returns anQper at or whose effect on a vector igl=!, if A is the givenmatrix, which has to be a
Spar seExecut eMat ri x instance.

This is a static method.

Direct methods like the ones above are important tools, causédme types of matrices, one can do even better, by
means of iterative methods, which, as an added benefit, deeqgoire a matrix representation of the operation they
are inverting:
classCG0Oper at or

A CQQOper at or inverts arOper at or givento it by means of the Hestenes/Stiefel Conjugate @rdadnethod.

It requires that the matrix representation of the giv@rer at or be symmetric (or hermitian for complex
matrices) and positive definite.

mak e(matrix.op, maxit=None, tolerance=1e-12, precaop=Nong
Returns aCGper at or that will iteratively approximate the inverse of ti@er at or matrix.op. maxit
specifies a bound on the number of iterations taken to reachdhl of decreasing the residugl A x = — b)?
by a factor oftolerance(where, obviouslyA is a matrix representation afatrix op, b is the vector to which the
CQOper at or is applied, and: is the candidate result. If the given target precision isreathed in the given
number of iterations, an exception is thrown.

preconop, finally, is an approximation tod~! that is applied once each iteration. As a preconditioner, it
should be computationally inexpensive—e.g., if an appboaof A takesO(n) computations, so should the
preconditioner.

Notice that neithematrix .op nor preconop are needed in matrix form—they are only passed ifzer at or
instances.

This is a static method.

classBi CGSTABOper at or
A Bi CGSTABOper at or inverts anOper at or given to it by means of the BICGSTAB method.

It relieves the symmetry requirement of the CG method, but bneak down for some matrices.

mak e(matrix.op, maxit=None, tolerance=1e-12, precaop=Nong
Returns 8i CGSTABOper at or that will iteratively approximate the inverse wfatrix.op. For the parameters,
seeCGper at or . nake.

Notice that neithematrix op nor preconop are needed in matrix form—they are only passed if@sr at or
instances.

This is a static method.

One preconditioner that is usable with the above iteratie¢hwds is available as part of NumPy:
classSSORPr econdi ti oner
A SSORPr econdi ti oner computes an approximate inverse of the given matrix: Lédte the lower-left
submatrix not including the diagonal, arid the diagonal part. Then, for a given parameterthe SSOR
preconditioner is given by
(2 —w)(D+wL) " (wD)(D+wL)™,

which can be rather efficiently implemented.

4.3. Types of Qperat ors 31

w is usually chosen to be one.
It requires the matrix to be symmetric (or hermitian in thenpdex case).

mak e(matrix, omega=J1
Returns anQper at or whose effect on a vector igi—!, if A is the givenmatrix, which has to be a
Spar seExecut eMat ri x instance.

This is a static method.

4.4 Implementing your own Qper at or s

TO BE WRITTEN. Refer to the source isrc/operator.py’, classLUl nver seQOper at or for an example. FIXME

For information on implementing your own operators in C+tegse refer to ChaptEl 6.

32 Chapter 4. Matrix-Free Methods

CHAPTER
FIVE

Numerics with PyLinear

This chapter introduces the numerical algorithms avadlabPyLinear.

PyLinear features six different modules of numerical alons:

e pyl i near. operati on uses the previously introduced notion of @ner at or and offers several imple-
mentations of the concept. It is also the main module of limdgebra computational routines in PyLinear. It
offers a comprehensive set of linear algebra primitiveshsas determinants, decompositions, linear solves,
eigenvalue finding and the like. While ti@er at or -based functions have been described in Chdpter 4, the
conceptually simpler function-call interfaces are ddsediin Sectior??.

e pylinear.|inear_al gebra is a compatibility module which aims for complete excharuis with
NumPy’'sLi near Al gebr a. It offers a high-level subset qfyl i near. oper ati on with less exposed
detail. See its documentation, which was made availablaa®pNumPy and numarray.

e pyl i near. npi will provide an interface between MPI and PyLinear, but isyet written.

e pyl i near.t oybox serves as a staging area for the above modules and has amifiadpeterface that may
change at any time. Look in the source to find experimentalrélgns that may solve your problems, but be
warned that these may disappear or change at any time.

5.1 Querying available functionality

Some features in PyLinear depend on outside software (suBAS and LAPACK). Many of these software pack-
ages are optional, and may or may not have been available Rfignear was compiled. Whether or not this was the
case, PyLinear still promises to function, albeit with regld functionality.

The following functions in the moduley!| i near enable you to query whether certain functionality is avdda

has_bl as()
Returns @ool indicating whether BLAS was available at compile time.

has_| apack()
Returns @ool indicating whether LAPACK was available at compile time.

has_ar pack()
Returns @ool indicating whether ARPACK was available at compile time.

has_unf pack()
Returns @ool indicating whether UMFPACK was available at compile time.

has_daskr ()
Returns @ool indicating whether DASKR was available at compile time.

33

If a given function depends on some external package, tegaet documentation section will state this. Sedfioh 2.1
provides a description of these packages.

5.2 Matrix computations

sol ve_l i near _syst en(matrix, rh9
Solves the linear systemmat r i x+*sol uti on=r hs. Uses LU decomposition or UMFPACK, depending on
availability and sparseness mwiatrix.

Returns the vectaol ut i on.

sol ve_l i near _syst em cg(matrix, rhg
Solves the linear systemat ri x*sol ut i on=r hs, wherematrixis symmetric and positive definite. Uses the
Hestenes-Stiefel Conjugate Gradient method. SeeGii&per at or .

chol esky(matrix)
Returns the Cholesky decompositibrof matrix. If we let A be equal tanatrix, thenL satisfiesA = LL.

[u(matrix)
Returnsatuplé¢!l, u, perm sign) that representsthe LU decompositiomastrix.

Let A be equal tomatrix, L equal tol, U equal tou and P equal to a permutation matrix with; ; = 1 iff
pernii]=j . Then the LU decomposition satisfiéd/ = PA.

See alsorake_per nut ati on_nmat ri x, which turngperminto a matrix like P.

ei genval ues(matrix)
Returns a sequence (of unspecified type) that containgahealues ofmatrix. Requires LAPACK.

di agonal i ze(matrix)
Returns a tuplé vr, w) of a matrixvr and a vectow.

Let A be equal tanatrix, V' equal tovr, andD equal to au and P equal to a permutation matrix with; ; = 1
iff pern{i]=j.Thenthe LU decomposition satisfiéé/ = PA.

5.3 Convenient helpers

34 Chapter 5. Numerics with PyLinear

CHAPTER
SIX

Extending PyLinear

This chapter ...

FIXME

6.1 Implementing custom operations

6.2 Implementing custom Oper at or s

35

36

CHAPTER
SEVEN

Differences to NumPy and numarray

This chapter outlines the differences between PyLineatlapgackages Numerical Python and numarray.

Unlike NumPy, PyLinear doesot allow more than two or less than one index dimension, i.enliy suports objects
with one and two indices, also known as vectors and matricefact, even vectors and matrices are different types
internally, while NumPy glosses over these differencesmaétes them all a singlarray type This makes sense
since NumPy'’s focus is on array-shaped data, such as images@asurements, while PyLinear’s focus is on linear
algebra.

« Ufunc methods are not supported.

« Slices copy, do not return views.

37

38

APPENDIX
A

Acknowledgements

PyLinear owes much to the heroes who fleshed out NumericaloRythumarray, numpy and their corresponding
interfaces. In particular, some parts of this manual arengthessly borrowed from numarray, as are a few docstrings.

PyLinear was written as part of a Diplom thesis at the Insfilu Angewandte Mathematik at Universitat Karlsruhe
(TH), Germany. | am grateful that my advisor, Prof. Dr. Wilgrfler, gave me the freedom to choose to write my
own matrix package as part of my thesis. The package wadisamiy enhanced and released to the public during a
paid research stay at his institute, whose support | grilyefaknowledge.

PyLinear has also benefitted from discussions | had with RoB®us of the Paul Scherrer Institute in early stages of
the project.

Last, but not least, PyLinear would not even exist if it wérér Python and the Boost C++ libraries.

39

40

0

operato 2P
*

operatorf-3D
+

operato 2P

__iter__ () (method)Zb

absol ut e() (in module)[Zh

add() (in module)[ZH#

add_el enent () (Matrix method)[2Zb
add_scattered() (method)2F
appl y() (Operator method. 29

ar gurment () (in module)[2h
array[Y

array() (in module)[8

asarray() (in module)[®

Bi CGSTABOper at or (class in)31
broadcas{ 14
broadcasting. 17
Build
Matrix, Sparse]7

ceil () (in module)2k

CGper at or (class in)31
chol esky() (in module)[3k
code

type[B

INDEX

Dense
Matrix, [4
Vector[J
di agonal () (in module)[Ib
di agonal i ze() (in module)[34
dimension[B
di vi de() (in module)[Z}
dtype[T[8
dt ype (Array attribute)[TIL

ei genval ues() (in module)34
Elementwise
Function[ZB
enpt y() (in module)[®
environment variables
LD_LIBRARY _PATH,H
Execute
Matrix, Sparse17
exp() (in module)[ZB
eye() (in module)[ID

Flavor O
fl avor (Array attribute)[IR
f1 oor () (in module)2k
Function
Elementwisd, 23
Universal[ZB

H (Matrix attribute)[2b

conpl ete_index1l data() (SparseExecuteMatrixhas_ar pack() (in module)[3B

method)[2b
conj ugat e() (in module)[ZB

copy() (method) 2l
cos() (in module)[ZB
cosh() (in module)[ZB
Cross

product[2P

Data

Type I
data

type [B

has_bl as() (in module)[3B
has_daskr () (in module)[3B
has_| apack() (in module)[3B
has_unf pack() (in module)[3B
hsplit() (in module)[Ib

hst ack() (in module)[ID

i magi nary (Array attribute)[Ib
i ndi ces() (method)2IF

Kronecker
product[2P

41

LD _LIBRARY _PATH,H

I og() (in module)[ZB

| 0g10() (in module)[ZB

[u() (in module)34

LUl nver seOper at or (classin)[3D

make() (BICGSTABOperator method), B1
make() (CGOperator method], B1
make() (LUInverseOperator method130
make() (MatrixOperator method_30
make() (SSORPreconditioner methof}] 32
make() (UMFPACKOperator method] 81
Matrix

Dense[lr

Sparse Build17

Sparse ExecutE] 7
matrix,[d
Mat ri xQOper at or (class in)[33D
maxi mum() (in module)[2h
m ni mum() (in module)[Z#
mul tiply() (in module)[2k

ones() (in module)[®

Operator 2P
Oper at or (class in)[(2ZP
operator

()23
* 30
+1

power () (in module)[ZH#
product

cross[2ZP
Kronecker 2R
Tensor[2P

real (Array attribute)Ib

set _el enent () (method)[Zb

set el ement _past _end() (Matrix method)[2b

shape (Array attribute)[TIL
shape (Operator attribute], 29
si n() (in module)[ZB

si nh() (in module)[ZB

sol ve_l i near _system) (in module)[3%
sol ve_linear_system cg() (in module)3k

sol ve_| ower () (method)[ZB
sol ve_upper () (method)2IF
sort () (SparseBuildMatrix method), P5
Sparse
Build Matrix, [d
Execute Matrix[J7
sparse() (in module)[®
sqrt () (in module)[2ZB
SSORPr econdi ti oner (class in)31

subt ract () (in module)[2k
sum() (method)[2b

T (Matrix attribute) [Zb
t ake() (in module)[Ib
tan() (in module)[2B
tanh() (in module)[Zh
Tensor

product[2ZP
trace() (in module)[2b
tri() (in module)ID
Type

Data[T
type

code[B

data[B
typecode B

t ypecode() (Operator method]. 29

UMFPACKOper at or (class in)31

Universal
Function[ZB

Vector
Densel[lV
vector[T
vsplit () (in module)[Ib
vst ack() (in module)[ID

zer os() (in module)[®

42

Index

	Introduction
	Installation
	Checking prerequisites
	Installing Boost Python
	Installing the Boost UBlas Bindings
	Installing PyLinear

	The Array types
	Types and Flavors
	Creating Arrays
	Pickle support

	Accessing Array Properties
	Accessing Array Data
	Indexing
	Row-wise Access
	Strides
	Broadcasting

	Picking Arrays apart
	Picking apart complex Arrays
	Getting Noncontiguous Parts of an Array

	Basic Array Math
	Generalities on Binary Operations
	Type promotion
	Broadcasting

	Multiplicative (and related) Operators
	Related operators

	Elementwise Functions
	Linear Algebra

	Flavor-specific Functionality
	Matrix algebra
	Simple computational routines

	Matrix-Free Methods
	The Operator concept
	Operators Form an Algebra
	Types of Operators
	Implementing your own Operators

	Numerics with PyLinear
	Querying available functionality
	Matrix computations
	Convenient helpers

	Extending PyLinear
	Implementing custom operations
	Implementing custom Operators

	Differences to NumPy and numarray
	Acknowledgements
	Index

