
PyLinear
Release 0.92

Andreas Klöckner

July 9, 2006

Division of Applied Mathematiccs, Brown University
Campus Box F, Providence, RI 02912, USA

Abstract

PyLinear provides a comprehensive and extensible environment for linear algebra in Python.

It is comprehensive in that it offers sparse and dense matrices of real and complex types, along with a full set of
operations on them.

It is extensible in that it can trivially be programmed in Python, but it may just as trivially be extended in C++. Ifmex
programming in Matlab always sounded too cumbersome, PyLinear provides a refreshing new (and easy) perspective.
This allows a new type of hybrid numerical system, where non-performance-critical parts may remain in the high-level
language, while inner loops may be easily moved to C++.

There is no shortage of Python packages that provide matrices and operations on them. Numerical Python, numarray
and the new NumPy (formerly SciPy Core) are good examples. However, few of these packages focus exclusively on
Linear Algebra, and even fewer provide crucial tools for numerical analysis, such as sparse matrices. PyLinear fills
this niche.

CONTENTS

1 Introduction 1

2 Installation 3
2.1 Checking prerequisites 3
2.2 Installing Boost Python 4
2.3 Installing the Boost UBlas Bindings 5
2.4 Installing PyLinear 5

3 TheArray types 7
3.1 Types and Flavors 7
3.2 CreatingArrays . 8

3.2.1 Pickle support 11
3.3 AccessingArray Properties . 11
3.4 AccessingArray Data . 12

3.4.1 Indexing 12
Row-wise Access 13
Strides .. . 14
Broadcasting 14

3.4.2 PickingArrays apart . 15
Picking apart complexArrays . 15
Getting Noncontiguous Parts of anArray . 16

3.5 BasicArray Math . 16
3.5.1 Generalities on Binary Operations 17

Type promotion 17
Broadcasting 17

3.5.2 Multiplicative (and related) Operators 18
Related operators 19

3.6 Elementwise Functions 23
3.6.1 Linear Algebra 25

3.7 Flavor-specific Functionality 25
3.8 Matrix algebra 26
3.9 Simple computational routines 26

4 Matrix-Free Methods 29
4.1 TheOperator concept . 29
4.2 Operators Form an Algebra .. 29
4.3 Types ofOperators . 30
4.4 Implementing your ownOperators . 32

i

5 Numerics with PyLinear 33
5.1 Querying available functionality 33
5.2 Matrix computations 34
5.3 Convenient helpers 34

6 Extending PyLinear 35
6.1 Implementing custom operations 35
6.2 Implementing customOperators . 35

7 Differences to NumPy and numarray 37

A Acknowledgements 39

Index 41

ii

CHAPTER

ONE

Introduction

This chapter introduces the PyLinear Python extension and outlines the rest of the document.

PyLinear is a set of extensions to the Python programming language which allows Python programmers to efficiently
manipulate matrices and vectors, the primary objects of linear algebra. It allows real and complex arithmetic, currently
only in double precision. Dense as well as two types of sparsematrices are supplied, and a large variety of numerical
algorithms, from eigensolvers, to singular value decomposition, direct sparse solvers to sparse eigensolvers are also
furnished as part of an ever-growing standard library.

PyLinear’s programming interface is similar to that of Numerical Python and numarray to ease porting, but differs
in a few key aspects. The most notable such aspect is matrix multiplication. While the termA*B in Numeric means
element-by-element multiplication, PyLinear changes this to mean conventional matrix-matrix and matrix-vector mul-
tiplication, to match customary uses in scientific computing, and following the example of languages such as Matlab1.
Chapter 7 is dedicated to highlighting the differences between PyLinear and NumPy and its desecendents.

In very simple terms, PyLinear is a mapping of the operators supplied by Boost.UBlas into Python using the
Boost.Python library. This has two implications that balance each other. First, PyLinear is no speed demon. It
does have the right asymptotic complexity guarantees (i.e.operations that ought to be linear-time in fact are). That’s
the bad news. The good news is that since PyLinear is essentially a scripting language for Boost.UBlas, it is sheepishly
easy to convert a slow inner loop from Python into C++, without losing much abstraction: The matrix and vector types
as well as most operations are available in C++ with only slightly more difficult syntax than in Python. But if that
is so, why would you want to use Python in the first place? Because it’s high-level, safe and does not require the
sometimes lengthy compile times of C++. And you need to convert only that slow inner loop! Since you, too, can use
Boost.Python to bind that inner loop to Python (and still usePyLinear’s facilities), there’s no real need to move the
whole system into C++. That way, Python can be the convenientand safe prototyping language for large computation
systems written in C++.

1This has one important gotcha. Vector-vector multiplication (also known as the dot product) isnot associative, i.e. ifa, b andc are vectors,
then typically(a · b) · c 6= a · (b · c). (Note that the type of the parenthesized expression is scalar.) PyLinear will not reject code such asa*b*c,
but its meaning is inherently undefined. Matlab gets around this limitation by introducing column and row vectors.

1

2

CHAPTER

TWO

Installation

This chapter helps you install PyLinear onto your computer.

2.1 Checking prerequisites

The first step in installing PyLinear is to make sure that you have the right software installed on your computer. You
will need the following:

• Python is of course the most important prerequisite. Version 2.3 or newer will work.

You can find Python athttp://www.python.org.

• The Boost libraries. Versions 1.33 and up work fine. Section2.2 will help you with the installation of this
prerequisite.

You can find Boost athttp://www.boost.org.

• The Boost Numeric library bindings. Section 2.3 will help you with this.

You can find the Boost Numeric bindings athttp://news.tiker.net/software/boost-bindings.

• A good enough C++ compiler. GCC version 3.3 and up work fine.

GCC versions 4.0 and better will compile PyLinear using muchless memory and generally much faster than
the older 3.x series. Using them is highly recommended. Notehowever that GCC 4.1 has a bug that affects
Boost.UBlas. (seehttp://gcc.gnu.org/bugzilla/show bug.cgi?id=28016)

GCC can be found athttp://gcc.gnu.org.

Optionally, you may install the following libraries to augment PyLinear’s functionality:

• TheBasic Linear Algebra Subprograms, better known as the BLAS.This will not enable any new functionality
by itself, but is a prerequisite for many of the following libraries.

You can find the original Fortran BLAS athttp://netlib.org/blas. A good, generic implementation is
ATLAS athttp://math-atlas.sf.net.

• TheLinear Algebra Package, better known asLAPACK. This will enable a few extra operations on dense matri-
ces, such as finding eigenvalues or the singular value decomposition.

You can find LAPACK athttp://netlib.org/lapack. ATLAS now includes a LAPACK implementation.

• UMFPACK, which requires BLAS, provides an efficient direct solver for linear systems involving sparse matri-
ces.

As of late, most major Linux distributions package UMFPACK as part of a bigger package called UFsparse.
While this is (in my opinion) not such a great idea, it’s a factthat PyLinear has to live with.

3

http://www.python.org
http://www.boost.org
http://news.tiker.net/software/boost-bindings
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=28016
http://gcc.gnu.org
http://netlib.org/blas
http://math-atlas.sf.net
http://netlib.org/lapack

Newer versions of PyLinear therefore default to using UFsparse, but will still run with just UMFPACK (and
COLAMD) installed.

Unfortunately, versions of the Boost Numeric Bindings prior to release 2006-04-30 (from the PyLinear’s au-
thor’s web site) defaulted to using an include file ‘umfpack/umfpack.h’, which is not possible within UFsparse,
where UMFPACK headers are typically installed under ‘/usr/include/ufsparse/umfpack.h’. The above-mentioned
release fixes this, but also requires you to mention the full path to ‘umfpack.h’ in ‘ siteconf.py’.

BIG FAT WARNING: If you get the Boost Numeric Bindings from CVS, you will have to make this change
yourself.

You can find UMFPACK athttp://www.cise.ufl.edu/research/sparse/.

• ARPACK, which requires both BLAS and LAPACK, allows the solving of sparse eigenvalue problems.

If you are planning on using ARPACK, please also read about the thisbug that might require you to patch
ARPACK in order to use PyLinear with ARPACK. (If you don’t useit, you may get invalid results or inexplicable
crashes. Do yourself the favor.)

You can find ARPACK athttp://www.caam.rice.edu/software/ARPACK/.

• DASKR, a well-known package for solving Differential-Algebraic Equations, or DAEs for short. DAEs are a
generalization of Ordinary Differential Equations, or ODEs for short.

This functionality is available as part of the toybox (see Chapter 5) for what the toybox is), but it’s there if you
need it.

For ease of compilation, the DASKR source is packaged with PyLinear. To enable its use, simply go to the
subdirectory ‘fortran/daskr’, type ./build.sh, watch for its successful completion and uncomment the default
options relating to DASKR in ‘siteconf.py’.

You can find DASKR athttp://netlib.org/ode.

PyLinear allows you to query at runtime which of these packages are available, see Section 5.1.

2.2 Installing Boost Python

Installing the Boost libraries in a way that is suitable for PyLinear is, unfortunately, a non-straightforward process, at
least if you are doing it for the first time. This section describes that process.

There is a bit of good news, though: If you are lucky enough to be using the Debian flavor of Linux or one of its
derivatives, you may simply typeaptitude install libboost-python-dev and ignore the rest of this
section.

Otherwise, you must follow these steps:

• Download a Boost release.

• Download and install Boost.Jam, a build tool.

• Build Boost, such as by typing

bjam -sPYTHON_ROOT=/usr -sPYTHON_VERSION=2.4 \
-sBUILD="release <runtime-link>dynamic <threading>multi"

(You may have to adaptPYTHON_ROOT andPYTHON_VERSION depending on your system.)

4 Chapter 2. Installation

http://www.cise.ufl.edu/research/sparse/
http://www.caam.rice.edu/software/ARPACK/
http://netlib.org/ode

• Check the directory

boost/bin/boost/libs/python/build/libboost_python.so...
.../gcc/release/shared-linkable-true/threading-multi

and find ‘libboost python*.so’. (Don’t copy the dots–they are only there to make the line fiton this page.) Copy
these files to somewhere on your dynamic linker path, for example:

– ‘ /usr/lib’

– a directory on LDLIBRARY PATH

– or something mentioned in ‘/etc/ld.so.conf’.

You should also create a symbolic link called ‘libboost python.so’ to the main ‘.so’ file.

• Run ldconfig.

2.3 Installing the Boost UBlas Bindings

This part is, fortunately, very easy. Just go tohttp://news.tiker.net/software/boost-bindings,
download the current snapshot and extract it somewhere, forexample by typing

tar xvfz boost-bindings-NNNNNNNN.tar.gz

Then remember the path where you unpacked it for the next step.

If you get the Boost Numeric Bindings from CVS, please read the section on installing UMFPACK/UFsparse in
Section 2.1.

2.4 Installing PyLinear

As a first step, copy the file ‘siteconf-template.py’ to ‘ siteconf.py’ and open an editor on that file. You will see a bunch
of variables that you may customize to adapt PyLinear to yoursystem. First of all, there are a few variables that are
namedHAVE XXX, such asHAVE BLAS. They all default toFalse. If you have the corresponding library available,
set that variable toTrue.

For each library that you have answeredTrue above, you may need to state in which directories to find the header
files (in XXX INCLUDE DIRS), the libraries (inXXX LIBRARYDIRS) and finally, if the libraries are named in some
nonstandard fashion, you may also have to change the librarynames to link against (inXXX LIBRARIES). The defaults
work at least with Debian Linux.

These above instructions apply to all prerequisite libraries. Here are a few hints for specific libraries:

• For Boost, setBOOSTINCLUDE DIR to the directory where the root of your boost tree. Typically, it ends
in ‘boost’. For BOOSTLIBRARYDIRS, give the path where you put thelibboost_python*.so files.
Finally, you should usually leave BPLLIBRARIES unchanged and make a symbolic link from ‘libboost -
python.so’ to the actual (non-symlink) ‘.so’ file.

• For the Boost bindings, just insert the path where you unpacked them–No further installation is required.

• Here’s an extra trick for BLAS and LAPACK if you are using Debian: If you install lapack and blas, make sure
to install the versions ending in “3” (i.e.blas3-dev andatlas3-dev), and also install “atlas3-ARCH-
dev”, whereARCH is your processor architecture. Debian will then automatically activate an accelerated BLAS
for your computer.

2.3. Installing the Boost UBlas Bindings 5

http://news.tiker.net/software/boost-bindings

Then, type

python setup.py build

and wait what happens. This will compile PyLinear, which, depending on your compiler, will take a little while. Once
this step completes, type

su -c "python setup.py install"

As a final step, you may change into the ‘test/’ subdirectory and execute

python test_matrices.py

This will execute PyLinear’s unit test suite. All tests should run fine, outputting a long line of dots and ”OK” as the
last line of output.

Congratulations! You have now successfully installed PyLinear.

6 Chapter 2. Installation

CHAPTER

THREE

The Array types

This chapter decribes the basic array types provided by PyLinear, and the elementary operations available
on them.

We’re describing the modulepylinear.array. For simplicity, it is assumed to be imported using

>>> from pylinear.array import *

in the examples.

3.1 Types and Flavors

First, let’s fix a bit of terminology.

From this point onwards, we will use the termArray to mean any type of matrix or vector. The termMatrix will
refer to matrices, both sparse and dense. The termVector shall refer to only the dense vector type. Note that these
do not exist as actual Python classes, but we will pretend that they do.

In PyLinear, two things determine anArray type: theflavorand thedata type(or dtypefor short).

The supported data types are

• double precision (i.e. 64-bit) real, and

• double precision (i.e. 2x64-bit) complex.

The supported flavors are

• dense vector,

• dense matrix,

• sparse build matrix, and

• sparse execute matrix.

There is only one vector flavor, but there are three differentflavors of matrices with different performance and memory
characteristics.Densematrices storem-by-n elements in a two-dimensional grid ofm rows andn columns. They are
used for small matrices or those which have mostly non-zero elements. Contrast this with the sparse types, which are
typically used for matrices consisting of mostly zero elements.Sparse buildmatrices store their elements a list of ‘(i,
j, a[i,j])’, to which new elements are simply appended, which is very fast. This list is typically unsorted, but
may have to be sorted byi andj for multiplication, element access or element removal, which makes these operations

7

pretty slow. Consequently, this flavor is typically used forthe assembly of large sparse matrices. It is then converted
to thesparse executeflavor for fast matrix multiplication. This flavor uses a standard compressed column format for
fast linear algebra operations.

Each of the flavors is represented by a symbolic constant:

Constant Corresponding Flavor
Vector The dense vector flavor.
DenseMatrix The dense matrix flavor.
SparseBuildMatrix The sparse build matrix flavor.
SparseExecuteMatrix The sparse execute matrix flavor.

Likewise, each of the element types has its own symbolic constant.

Constant Corresponding Element Type
Float64 The 64-bit real element type.
Complex64 The 2x64-bit complex element type.
Float The machine-native C++double element type. An alias forFloat64.
Complex The machine-native C++std::complex<double> element type. An alias forComplex64.

Despite a good bit of internal dissimilarity, PyLinear’s programming interface attempts to be mostly compatible with
NumPy, which is the traditional (non-sparse) array packagefor Python. So suppose you have some NumPy code that
you would like to run on PyLinear. That code likely has a line like import numpy somewhere near the top. Then
you can try and sayimport pylinear.array as numpy, which should get you most of the way there.

3.2 Creating Arrays

The following functions in the modulepylinear.array permit the creation of newArrays:

array(sequence, dtype=None)
There are many ways to create arrays. The most basic one is theuse of thearray function:

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do:

>>> a
array([1.2, 3.5, -1.0])

Thearray function takes several arguments — the first one is a Python sequence object (such as a list or a
tuple). The optional argumenttype specifies the element type of the matrix. If omitted, as in theexample
above, Python tries to find the best data type which can represent all the elements.array always creates dense
matrices or vectors, depending on thedimensionalityof the input data. (The dimension of the data is 1 for a list,
2 for a list of lists, and so on. 1-dimensional data will be converted to vectors, 2-dimensional data to matrices.)

Since the elements we gave our example were two floats and one integer, it choseFloat64 as the type of the
resulting array. One can specify unequivocally thetype of the elements—this is especially useful when, for
example, one wants an array contains complex numbers even though all of its input elements are reals:

>>> array([1,2,3]) # reals are enough for 1, 2 and 3
array([1.0, 2.0, 3.0])
>>> array([1,2,3], dtype=Complex64) # not the default type
array([(1+0j), (2+0j), (3+0j)])
>>> array([1,2,3+0j]) # same effect
array([(1+0j), (2+0j), (3+0j)])

8 Chapter 3. The Array types

Note that in NumPy,array takes a few more arguments, such ascopy, savespace, andshape. These are
not supported.

sparse(mapping, shape=None, dtype=None, flavor=SparseBuildMatrix)
This function creates a (not necessarily sparse)Matrix of the givenshape, dtype, andflavor based on a
sparse representation of its entries. At present, it cannotcreateVectors. The sparse representation consists of
a dictionary of dictionaries, whose keys are the row indicesfor the outer dictionary, and the column indices for
the inner one.

If the shape parameter is unspecified, the shape is specified by the largest row and column indices seen in
examining themapping. If thedtype is unspecified,sparse uses the same logic asdata to determine it.

>>> sparse({0:{4:17, 3:1+2j},3:{2:15}})
sparse({0: {3: (1+2j), 4: (17+0j)},

3: {2: (15+0j)}},
shape=(4, 5), flavor=SparseBuildMatrix)

>>> sparse({0:{4:17, 3:1+2j},3:{2:15}}, flavor=SparseExecuteMatrix)
sparse({0: {3: (1+2j), 4: (17+0j)},

3: {2: (15+0j)}},
shape=(4, 5), flavor=SparseExecuteMatrix)

asarray(seq, dtype, flavor=None)
This function converts scalars, lists and tuples to anArray type, if possible. It passesArrays through, making
copies only to convert types. In any other case aTypeError is raised.

empty(shape, dtype=Float, flavor=None)
empty creates anArray of the givenshape, dtypeandflavor which is not initialized at all. With a little bit of
luck, it’ll contain all zeros, but in general it may contain whichever garbage was in the chunk of memory that
theArray now occupies. This is typically faster thanzeros, especially for denseArrays.

If you do decide that you need theArray empty, callclear() on it.

See theshape attribute in Section 3.3 for information on theshapeparameter.

>>> empty((2,5), Float) # ATTENTION: random garbage
array([[-3.92715777576e-39, 6.3659873729e-314, 6.36598737438e-314,

6.36598737438e-314, 6.36598737438e-314],
[5.54176250076e+257, 2.80259807429e+262, 1.99389578315e-313,

9.89838462118e+169, 3.60739284523e-313]])

zeros(shape, dtype=Float, flavor=None)
zeros creates anArray of the givenshape, dtypeandflavor which is filled with zeros. See theshape
attribute in Section 3.3 for information on theshapeparameter.

>>> zeros((2,5), Float)
array([[0.0, 0.0, 0.0, 0.0, 0.0],

[0.0, 0.0, 0.0, 0.0, 0.0]])

ones(shape, dtype=Float, flavor=None)
ones creates anArray of the givenshape, dtypeandflavorwhich is filled with ones. See theshape attribute
in Section 3.3 for information on theshapeparameter.

>>> ones((3,7), Float)
array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]])

3.2. Creating Arrays 9

eye(n, m=None, offset=0, dtype=Float, flavor=None)
eye creates aMatrix of shape(n,m) and the givendtypeandflavor which is filled with zeros and has ones
on theoffsetth super-diagonal.m is assumed identical ton if it is None.

offset may also be negative, thus pointing to a sub-diagonal.

If offset is 0, you get ann × m identity matrix.

>>> eye(4, 3, offset=1, dtype=Complex)
array([[0j, (1+0j), 0j],

[0j, 0j, (1+0j)],
[0j, 0j, 0j],
[0j, 0j, 0j]])

tri(n, m=None, offset=0, dtype=Float, flavor=None)
tri creates aMatrix of shape(n,m) and the givendtypeand flavor which has ones on theoffsetth
super-diagonal and below, and zeros elsewhere.

offset may also be negative, thus pointing to a sub-diagonal.

>>> tri(4, 3, offset=1, dtype=Complex)
array([[(1+0j), (1+0j), 0j],

[(1+0j), (1+0j), (1+0j)],
[(1+0j), (1+0j), (1+0j)],
[(1+0j), (1+0j), (1+0j)]])

hstack(tup)
Take a sequence of arrays and stack them horizontally to makea single array. All arrays in the sequence must
have the same shape along all but the second axis.hstack will rebuild arrays divided byhsplit.

>>> a = identity(3)[:,:2]
>>> a
array([[1.0, 0.0],

[0.0, 1.0],
[0.0, 0.0]])

>>> hstack((a,2*a,3*a))
array([[1.0, 0.0, 2.0, 0.0, 3.0, 0.0],

[0.0, 1.0, 0.0, 2.0, 0.0, 3.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]])

vstack(tup)
Take a sequence of arrays and stack them vertically to make a single array. All arrays in the sequence must have
the same shape along all but the first axis.vstack will rebuild arrays divided byvsplit.

>>> a = identity(3)[:2]
>>> a
array([[1.0, 0.0, 0.0],

[0.0, 1.0, 0.0]])
>>> vstack((a,2*a,3*a))
array([[1.0, 0.0, 0.0],

[0.0, 1.0, 0.0],
[2.0, 0.0, 0.0],
[0.0, 2.0, 0.0],
[3.0, 0.0, 0.0],
[0.0, 3.0, 0.0]])

10 Chapter 3. The Array types

3.2.1 Pickle support

Arrays also have efficient support for pickling. Pickling is a convenient way to store complicated data structures
in a platform-independent byte stream. Unless you need human-readable output, pickling makes an excellent way of
saving PyLinear arrays to disk.

As such, unpickling a previously pickledArray is another way to create one:

>>> x = array([[1,2,3],[4,5,6]])
>>> x
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> import pickle
>>> string_rep = pickle.dumps(x)
>>> isinstance(string_rep, str)
True
>>> y = pickle.loads(string_rep)
>>> y
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])

Pickling also works on arbitrarily larger data structures of whichArrays are only a part.

3.3 Accessing Array Properties

Once you’ve created a fewArrays, you might want to query them about their properties, such as their data type or
shape.

shape
Reading theshape attribute gets the shape tuple, that is, a tuple of length equal to the array’s rank specifying
the dimensions of the matrix. For a vector, this is a singleton containing an integer, for a matrix, this is a pair
containing the number of rows and columns, in this order.

Assigning a value to theshape attribute will destructively resize the array.

>>> x = array([[1,2,3],[4,5,6]])
>>> x.shape
(2, 3)
>>> x.T.shape
(3, 2)
>>> x.shape = (4,2)
>>> x # typically random garbage
array([[1.0, 2.0],

[4.0, 5.0],
[6.3659873729e-314, 8.70018274296e-313],
[2.2424384485e-269, 1.91651066261e-313]])

dtype
Reading thedtype attribute gets the data type of the given matrix. Assigning avalue to thedtype attribute is
not supported.

3.3. Accessing Array Properties 11

>>> x = array([[1,2,3],[4,5,6]])
>>> x.dtype
pylinear.array.Float64
>>> x = array([[1+3j,2-4j,3],[4,5+1j,6]])
>>> x.dtype
pylinear.array.Complex64

flavor
Reading theflavor attribute gets the flavor of the given matrix. Assigning a value to theflavor attribute is
not supported.

3.4 Accessing Array Data

PyLinear provides a multitude of ways to access and manipulate the data contained in an array, the simplest of which
may be just accessing the elements one-by-one or in chunks, as described in the next section.

3.4.1 Indexing

PyLinear supports indexing for reading and writing onArrays, in nearly the same way as you might be used to it
from either Python sequences or Matlab matrices. This mode of access is quite power- and featureful, so let’s go over
the possibilities one by one.

Matrix objects are indexed by 2-tuples, whereasVectors are indexed by single values. Like all indices in Python,
PyLinear’s indices are 0-based.

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])

>>> a[0,2]
3.0
>>> a[0,1:]
array([2.0, 3.0])
>>> v = array([1,2,3])
>>> v[1]
2.0
>>> v[1:]
array([2.0, 3.0])

Negative indices count from the end of the respective dimension:

12 Chapter 3. The Array types

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])

>>> a[-1,-2]
8.0
>>> a[-1,1:]
array([8.0, 9.0])
>>> v = array([1,2,3])
>>> v[-1]
3.0
>>> v[-1:]
array([3.0])

Writing data to specific places inArrays is just as simple:

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> a[0,2] = 17
>>> a
array([[1.0, 2.0, 17.0],

[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])

>>> a[0:2,1:] = array([[17,18],[19,20]])
>>> a
array([[1.0, 17.0, 18.0],

[4.0, 19.0, 20.0],
[7.0, 8.0, 9.0]])

Row-wise Access

Indexing a matrix with a single value returns entire rows asVectors:

>>> a[0]
array([1.0, 17.0, 18.0])
>>> a[0].flavor
Vector

Note the subtlety: If you specify just a column or row, you getaVector. If you specify a one-element slice, you get
aMatrix:

>>> a[0:1]
array([[1.0, 17.0, 18.0]])
>>> a[0:1].flavor
Matrix

The same logic, of course, goes for column-wise access:

3.4. Accessing Array Data 13

>>> a[:,2]
array([18.0, 20.0, 9.0])
>>> a[:,2].flavor
Vector
>>> a[:,2:3]
array([[18.0],

[20.0],
[9.0]])

>>> a[:,2:3].flavor
Matrix

Write access is less picky in that respect:

>>> a[0] = array([1.41,3.14,2.71]) # write as vector
>>> a
array([[1.41, 3.14, 2.71],

[4.0, 19.0, 20.0],
[7.0, 8.0, 9.0]])

>>> a[0] = array([[3.14,2.71,1.56]]) # write as matrix
>>> a
array([[3.14, 2.71, 1.56],

[4.0, 19.0, 20.0],
[7.0, 8.0, 9.0]])

Strides

Strides are supported, i.e.a[3:9:2] gives you the entries at indices 3, 5, and 7. Strides may also be negative:

>>> a
array([[3.14, 2.71, 1.56],

[4.0, 19.0, 20.0],
[7.0, 8.0, 9.0]])

>>> a[::-1]
array([[7.0, 8.0, 9.0],

[4.0, 19.0, 20.0],
[3.14, 2.71, 1.56]])

Unlike Python lists,Arrays may not be resized using slice assignments. Like in the restof Python, yet unlike NumPy,
slices return copies, not views of the corresponding data.

Broadcasting

When assigning toArrays slices and/or subscripts, the right hand side of the assignment may have lesser rank than
the left hand side. In this case, the right hand side isbroadcastacross the missing rank. Observe:

14 Chapter 3. The Array types

>>> a = ones((5,5))
>>> b = arange(5)
>>> a[:,:] = b
>>> a
array([[0.0, 1.0, 2.0, 3.0, 4.0],

[0.0, 1.0, 2.0, 3.0, 4.0],
[0.0, 1.0, 2.0, 3.0, 4.0],
[0.0, 1.0, 2.0, 3.0, 4.0],
[0.0, 1.0, 2.0, 3.0, 4.0]])

>>> a[:,:] = 10
>>> a
array([[10.0, 10.0, 10.0, 10.0, 10.0],

[10.0, 10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0, 10.0],
[10.0, 10.0, 10.0, 10.0, 10.0]])

The same trick works for vectors as well.

3.4.2 Picking Arrays apart

The following operations return only parts of the data contained in aArray object:

Picking apart complex Arrays

real
Reading this attribute obtains a copy of the real part of the matrix. For real matrices, the matrix is simply copied.

In NumPy, this method does not return a copy, but a view.

>>> x = array([[1+3j,2-4j,3],[4,5+1j,6]])
>>> x
array([[(1+3j), (2-4j), (3+0j)],

[(4+0j), (5+1j), (6+0j)]])
>>> x.real
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])

imaginary
Reading this attribute obtains a copy of the imaginary part of the matrix. For real matrices, a zero matrix of the
same size is returned.

In NumPy, this method does not return a copy, but a view.

>>> x = array([[1+3j,2-4j,3],[4,5+1j,6]])
>>> x
array([[(1+3j), (2-4j), (3+0j)],

[(4+0j), (5+1j), (6+0j)]])
>>> x.imaginary
array([[3.0, -4.0, 0.0],

[0.0, 1.0, 0.0]])

3.4. Accessing Array Data 15

Getting Noncontiguous Parts of an Array

take(matrix, indices, axis=0)
Assembles anArray from the entries of theArray listed in indices, which must be simple numbers.axis
specifies the axis along which the indices are taken.

Next, we will discuss a few functions that return just parts of Matrix objects.

hsplit(ary, indicesor sections)
Split a singleMatrix array into multiple sub-Matrix instances. The array is divided into groups of columns.
If indices_or_sections is an integer,ary is divided into that many equally sized sub-arrays. If it is
impossible to make the sub-arrays equally sized, the operation throws a ValueError exception.

>>> a = array([[1,2,3],[4,5,6]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> hsplit(a.T, 2)
[array([[1.0],

[2.0],
[3.0]]), array([[4.0],
[5.0],
[6.0]])]

>>> hsplit(a, [1])
[array([[1.0],

[4.0]]), array([[2.0, 3.0],
[5.0, 6.0]])]

>>> hstack(hsplit(a, [1])) == a
True

vsplit(ary, indicesor sections)
Split a singleMatrix array into multiple sub-Matrix instances. The array is divided into groups of rows.
If indices_or_sections is an integer,ary is divided into that many equally sized sub-arrays. If it is
impossible to make the sub-arrays equally sized, the operation throws a ValueError exception.

>>> a = array([[1,2,3],[4,5,6]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> vsplit(a, 2)
[array([[1.0, 2.0, 3.0]]), array([[4.0, 5.0, 6.0]])]
>>> vsplit(a, [1])
[array([[1.0, 2.0, 3.0]]), array([[4.0, 5.0, 6.0]])]
>>> vstack(vsplit(a, [1])) == a
True

diagonal(matrix, offset=0)
Returns the diagonal ofmatrix as a vector, or theoffsetth super- (foroffset>0) or sub-diagonal (for
offset<0).

>>> a =
array([[1,2,3],[4,5,6]]) >>> a >>> diagonal(a) >>> diagonal(a,1)

3.5 Basic Array Math

In this section, we will discuss how to perform basic calculations withArray objects.

16 Chapter 3. The Array types

To begin with,Arrays support the usual range of algebraic operators, such as+,-, * and/. For the additive operators,
this is straightforward, as the standard elementwise meaning applies. The multiplicative operators, on the other hand,
acquire different meanings depending on the types of their arguments, such as matrix or dot products. The details can
be found in 3.5.2. Despite the default “complicated” meaning of multiplication, elementwise multiplication is also
available, as is a host of other elementwise operations. See3.6 for details.

PyLinear also supplies a large number of more advanced matrix procedures. These are described in Chapter 5.

3.5.1 Generalities on Binary Operations

Arrays provide all the operators you would expect, like sums, differences, products and such. There are, however, a
couple of fine points that are worth noting:

Type promotion

If binary operators or elementwise functions (see Section 3.6) are applied to arrays of non-matching flavor or dtype, the
operands are promoted to a common type. (For the case of non-matching dimension, see Section?? for broadcasting
rules.)

If the only mismatch is in dtype, one argument array is cast upward in the type hierarchy (e.g. from integer to real,
from real to complex) in order to match the other.

>>> a = array([[1,2],[0,1]])
>>> b = ones((2,2)) * 1j
>>> a.dtype
pylinear.array.Float64
>>> b.dtype
pylinear.array.Complex64
>>> (a+b).dtype
pylinear.array.Complex64

If there is also a mismatch in flavor, the result assumes the flavor of the first operand:

>>> a = ones((3,3))
>>> b = ones((3,3), flavor=SparseBuildMatrix)
>>> a+b
array([[2.0, 2.0, 2.0],

[2.0, 2.0, 2.0],
[2.0, 2.0, 2.0]])

>>> b+a
sparse({0: {0: 2.0, 1: 2.0, 2: 2.0},

1: {0: 2.0, 1: 2.0, 2: 2.0},
2: {0: 2.0, 1: 2.0, 2: 2.0}},

shape=(3, 3), flavor=SparseBuildMatrix)

Broadcasting

The binary elementwise operators as well as all the binary elementwise functions (see Section 3.6) accept argument
pairs where one argument has lesser rank than the other. In this case, the missing ranks arebroadcastacross the
remainder of the matrix. If the lesser-rank argument is a scalar, this is easy to explain: It is treated like an array of the

3.5. Basic Array Math 17

right size filled with that scalar. If it is a vector, that vector is treated like a matrix filled with rows consisting of the
given vector.

>>> a = ones((4,4))
>>> b = arange(4)
>>> a
array([[1.0, 1.0, 1.0, 1.0],

[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]])

>>> b
array([0.0, 1.0, 2.0, 3.0])
>>> b+5
array([5.0, 6.0, 7.0, 8.0])
>>> a+b
array([[1.0, 2.0, 3.0, 4.0],

[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0]])

>>> a+b+5
array([[6.0, 7.0, 8.0, 9.0],

[6.0, 7.0, 8.0, 9.0],
[6.0, 7.0, 8.0, 9.0],
[6.0, 7.0, 8.0, 9.0]])

3.5.2 Multiplicative (and related) Operators

This section explains the value of the expressiona*b, where at least one ofa andb is anArray. Since multiplication
is probably the most significant element of linear algebra, there’s quite a bit to know here. Also, we will touch upon
other related notions such as outer, inner and Kronecker products as well as inversion and exponentiation.

If the one operand in the expressiona*b is a scalar (it doesn’t matter which), the result will be the elementwise product
of the array with that scalar.

>>> a = array([[1,2,3],[4,5,6]])
>>> a*2
array([[2.0, 4.0, 6.0],

[8.0, 10.0, 12.0]])
>>> 2j*a
array([[2j, 4j, 6j],

[8j, 10j, 12j]])

If both operands areVectors, a*b computes the inner product of both vectors. Note that in the complex case no
complex conjugates are taken. If you require them, use the expressiona*b.H. WARNING:This notation is convenient,
but slightly dangerous, mathematically. The inner product, if simply written as a “dot product”, isnot associative,
meaning that for vectorsa, b andc, typically (a · b) · c 6= a · (b · c). PyLinear has no way of rejecting unparenthesized
expressions such asa*b*c, but their meaning is uncertain since the order of evaluation is not explicitly specified.

18 Chapter 3. The Array types

>>> a = array([1,2,3])
>>> b = array([4,5,6])
>>> c = array([7,8,9])
>>> (a*b)*c
array([224.0, 256.0, 288.0])
>>> a*(b*c)
array([122.0, 244.0, 366.0])
>>> a*b*c # RANDOM RESULT!
array([224.0, 256.0, 288.0])

If a is aVector andb is aMatrix, a*b will result in bT a, using the conventional matrix-vector product.

If a is aMatrix andb is aVector, a*b will result in ab, using the conventional matrix-vector product.

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> b = array([1,3,5])
>>> a*b
array([22.0, 49.0, 76.0])
>>> b*a
array([48.0, 57.0, 66.0])
>>> a.T*b # less efficient!
array([48.0, 57.0, 66.0])

If botha andb areMatrix types,a*b will result in ab, using the conventional matrix-matrix product.

>>> a = array([[1,2,3],[4,5,6]])
>>> b = array([[1,2,1,2],[3,4,3,4],[5,6,5,6]])
>>> a*b
array([[22.0, 28.0, 22.0, 28.0],

[49.0, 64.0, 49.0, 64.0]])

All these explanations also apply to the inplace multiplication operator*=.

All multiplication operators obey type promotion rules as laid out in Section??.

Related operators

The following operators are not invoked asa*b, but are still related to multiplication:

• matrix**n

Computes thenth power ofmatrix. n must be integer, but may be negative. Only for dense matrices.

3.5. Basic Array Math 19

>>> a = array([[1,2,3],[3,2,1],[1,3,2]])
>>> a
array([[1.0, 2.0, 3.0],

[3.0, 2.0, 1.0],
[1.0, 3.0, 2.0]])

>>> a**2
array([[10.0, 15.0, 11.0],

[10.0, 13.0, 13.0],
[12.0, 14.0, 10.0]])

>>> a**3
array([[66.0, 83.0, 67.0],

[62.0, 85.0, 69.0],
[64.0, 82.0, 70.0]])

>>> a**3 * (1/a)
array([[10.0, 15.0, 11.0],

[10.0, 13.0, 13.0],
[12.0, 14.0, 10.0]])

• scalar/matrix

Computes thescalarmultiple of the inverse ofmatrix. Only for dense matrices.

Do not use code like1/a*b to solve the linear systemAx = b; besides being slow, this tends to yield imprecise
results. Instead, use the<<solve>> pseudo-operator.

Use of this operator will fail unless the modulepylinear.operation is available.

>>> a = array([[1,2,3],[3,2,1],[1,3,2]])
>>> a
array([[1.0, 2.0, 3.0],

[3.0, 2.0, 1.0],
[1.0, 3.0, 2.0]])

>>> 1/a
array([[0.0833333333333, 0.416666666667, -0.333333333333],

[-0.416666666667, -0.0833333333333, 0.666666666667],
[0.583333333333, -0.0833333333333, -0.333333333333]])

>>> 1/a * a
array([[1.0, 8.32667268469e-17, 4.16333634234e-17],

[-4.16333634234e-17, 1.0, -1.2490009027e-16],
[5.55111512313e-17, 0.0, 1.0]])

Observe that the results are likely useless if the matrix is singular:

20 Chapter 3. The Array types

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])

>>> 1/a
array([[3.15221190597e+15, -6.30442381193e+15, 3.15221190597e+15],

[-6.30442381193e+15, 1.26088476239e+16, -6.30442381193e+15],
[3.15221190597e+15, -6.30442381193e+15, 3.15221190597e+15]])

>>> 1/a * a
array([[3.0, 3.0, 3.0],

[-1.0, -2.0, -3.0],
[-2.5, -2.0, -1.5]])

>>> from pylinear.computation import determinant
>>> determinant(a)
-9.51712667008e-16

• matrix <<solve>> vector

Returns the solution of the linear system of equationsmatrix*x=vector. Available for dense and sparse
execute matrix types ofmatrix.

Use of this operator will fail unless the modulepylinear.computation is available.

Since this is not built using actual Python syntax, but rather cheaply composed of a special-purposesolve
object with left and right shift operators, some care needs to be exercised regarding operator precedence. When
in doubt, just use parentheses.

>>> a = array([[1,2,3],[3,2,1],[1,3,2]])
>>> b = array([9,1,1])
>>> v = a <<solve>> b
>>> v
array([0.833333333333, -3.16666666667, 4.83333333333])
>>> a * v
array([9.0, 1.0, 1.0])

Note that you need to qualify<<solve>> with the module name if you do not importpylinear.array
using ‘from ... import *’:

>>> import pylinear.array as num
>>> a = num.array([[1,2,3],[3,2,1],[1,3,2]])
>>> b = num.array([9,1,1])
>>> v = a <<num.solve>> b
>>> v
array([0.833333333333, -3.16666666667, 4.83333333333])
>>> a * v
array([9.0, 1.0, 1.0])

Observe that the results are likely useless if the matrix is singular:

3.5. Basic Array Math 21

>>> a = array([[1,2,3],[4,5,6],[7,8,9]])
>>> b = array([9,1,1])
>>> v = a <<solve>> b
>>> v
array([2.52176952477e+16, -5.04353904954e+16, 2.52176952477e+16])
>>> a * v
array([0.0, 0.0, -32.0])
>>> from pylinear.computation import determinant
>>> determinant(a)
-9.51712667008e-16

• vector1 <<outer>> vector2

Computes the outer product ofvector1 andvector2, whose result is the matrixv1 · v
T
2

.

>>> v = array([1,2,3])
>>> w = array([3,2,1])
>>> v <<outer>> w
array([[3.0, 2.0, 1.0],

[6.0, 4.0, 2.0],
[9.0, 6.0, 3.0]])

>>> w <<outer>> v
array([[3.0, 6.0, 9.0],

[2.0, 4.0, 6.0],
[1.0, 2.0, 3.0]])

Please see the section on<<solve>> above for important considerations on operator precedenceand module
qualification that also apply here.

• vector1 <<cross>> vector2

Computes the cross product ofvector1 andvector2. Bothvector1 andvector2must be of dimension
2 or 3. For dimension 2, thez component of the corresponding 3-dimensional cross product is returned as a
scalar.

>>> v = array([1,2,3])
>>> w = array([3,2,1])
>>> v <<cross>> w
array([-4.0, 8.0, -4.0])
>>> w <<cross>> v
array([4.0, -8.0, 4.0])
>>> (v <<cross>> w) * v
0.0

Please see the section on<<solve>> above for important considerations on operator precedenceand module
qualification that also apply here.

• matrix1 <<kron>> matrix2

Computes the Kronecker product (sometimes called the tensor product) ofmatrix1 andmatrix2:

A ⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB







22 Chapter 3. The Array types

>>> v = array([[1,4],[4,8]])
>>> w = array([[1,2],[2,1]])
>>> v <<kron>> w
array([[1.0, 2.0, 4.0, 8.0],

[2.0, 1.0, 8.0, 4.0],
[4.0, 8.0, 8.0, 16.0],
[8.0, 4.0, 16.0, 8.0]])

Please see the section on<<solve>> above for important considerations on operator precedenceand module
qualification that also apply here.

XXX Is outerproduct documented?

3.6 Elementwise Functions

PyLinear sports a few so-calledElementwise Functions, some of which areunary, while others arebinary. (In
NumPy, this kind of function is called a ufunc, or “UniversalFunction”.) Elementwise functions generally apply a
certain functionality to each element in an array. For example, thesin elementwise function computes the sine of
each of the given array’s entries, and returns the processedmatrix, which will be of the same size, flavor, and dtype.
Binary elementwise functions receive twoArrays of equal size as arguments, apply a binary function (such as, for
example, addition or multiplication) to each pair of entries of the twoArrays, pairing the entries at the same location
in eachArray, and return anArray with the results. Binary elementwise functions obey type promotion laws as
laid out in section??.

The following unary elementwise functions exist:

conjugate(array)
Returns the complex-conjugate of the givenArray. Simply copies real matrices.

cos(array)
Returns the elementwise cosine of the givenArray.

cosh(array)
Returns the elementwise hyperbolic cosine of the givenArray.

exp(array)
Returns the elementwise natural exponential of the givenArray.

WARNING:This is not matrix exponentiation.

log(array)
Returns the elementwise natural logarithm of the givenArray.

log10(array)
Returns the elementwise base-10 logarithm of the givenArray.

sin(array)
Returns the elementwise sine of the givenArray.

sinh(array)
Returns the elementwise hyperbolic sine of the givenArray.

sqrt(array)
Returns the elementwise square root of the givenArray.

tan(array)
Returns the elementwise tangent of the givenArray.

3.6. Elementwise Functions 23

tanh(array)
Returns the elementwise hyperbolic tangent of the givenArray.

floor(array)
Returns the elementwise floor of the givenArray.

ceil(array)
Returns the elementwise ceiling of the givenArray.

argument(array)
Returns the elementwise complex argument of the givenArray. Resulting matrix consists of values of zero
andπ for real matrices.

absolute(array)
Returns the elementwise absolute value of the givenArray.

The following binary elementwise functions exist:

add(op1, op2)
Returns the elementwise sum of the givenArrays. Obeys broadcasting (see Section??) and type promotion
(see Section??) laws.

Equivalent to the+ operator.

subtract(op1, op2)
Returns the elementwise difference of the givenArrays. Obeys broadcasting (see Section??) and type promo-
tion (see Section??) laws.

Equivalent to the- operator.

multiply(op1, op2)
Returns the elementwise product of the givenArrays. Obeys broadcasting (see Section??) and type promotion
(see Section??) laws.

NOTequivalent to the* operator, except in the scalar case.

divide(op1, op2)
Returns the elementwise quotient of the givenArrays. Obeys broadcasting (see Section??) and type promotion
(see Section??) laws.

NOTequivalent to the/ operator, except in the scalar case.

power(op1, op2)
Returns the elementwise powerop1[i]**op2[i] of the givenArrays. Obeys broadcasting (see Section
??) and type promotion (see Section??) laws.

NOTequivalent to the** operator, except in the scalar case.

maximum(op1, op2)
Returns the elementwise maximum of the givenArrays. Obeys broadcasting (see Section??) and type promo-
tion (see Section??) laws.

For complex matrices, the maximum is found based on the real part.

minimum(op1, op2)
Returns the elementwise minimum of the givenArrays. Obeys broadcasting (see Section??) and type promo-
tion (see Section??) laws.

For complex matrices, the minimum is found based on the real part.

Additional elementwise function methods, such asreduce, as they are found in NumPy, are not (yet) supported in
PyLinear.

24 Chapter 3. The Array types

3.6.1 Linear Algebra

The following operations are related to the theory of linearalgebra.

T
This object property a real-transpose copy of the matrix.

Does not exist in NumPy.

>>> x = array([[1,2,3],[4,5,6]])
>>> x
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> x.T
array([[1.0, 4.0],

[2.0, 5.0],
[3.0, 6.0]])

H
This object property returns a conjugate-transpose copy ofthe matrix. Identical toT for real matrices.

Does not exist in NumPy.

>>> x = array([[1+3j,2-4j,3],[4,5+1j,6]])
>>> x
array([[(1+3j), (2-4j), (3+0j)],

[(4+0j), (5+1j), (6+0j)]])
>>> x.H
array([[(1-3j), (4-0j)],

[(2+4j), (5-1j)],
[(3-0j), (6-0j)]])

trace(matrix, offset=0)
Returns the sum of theoffsetth diagonal. Seediagonal for details of the meaning ofoffset.

>>> a = array([[1,2,3],[4,5,6]])
>>> a
array([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])
>>> trace(a)
6.0
>>> trace(a,1)
8.0

3.7 Flavor-specific Functionality

The following methods tie into the particulars of the sparsematrices’ memory layouts.

sort()
The list of (i, j, ai,j) stored by aSparseBuildMatrix can become unsorted, depending on the order of
insertions into the matrix. This is rectified by thesort method. During normal usage, you don’t have to worry
about sorting your matrices, since this action is triggeredautomatically whenever it is necessary.

set_element(i, j, entry)
Sets the entry in theith row andjth column to the valueentry.

Why would you want this if you could easily sayA[i,j] = entry? This method is guaranteed to be an
O(1) operation if it is available, whereas the alternative notation will always work, but may be exceedingly

3.7. Flavor-specific Functionality 25

slow. (Consider the case of aSparseExecuteMatrix, which might have to perform anO(n2) move to
accomodate a new element.)

Available on all butSparseExecuteMatrix objects.

set_element_past_end(i, j, entry)
Sets the entry in theith row andjth column to the valueentry. If used, the user guarantees that for allk > i,
Ak,l = 0 for all l and thatAi,l = 0 for l >= j.

Why would you want this if you could easily sayA[i,j] = entry? This method is guaranteed to be an
O(1) operation if it is available, whereas the alternative notation will always work, but may be exceedingly slow.
(Consider the case of aSparseBuildMatrix, which might have to be resorted.)

add_element(i, j, number)
Addsnumberto the entry in theith row andjth column.

Why would you want this if you could easily say ‘A[i,j] += entry’? This method is guaranteed to be
an O(1) operation if it is available, whereas the alternative notation will always work, but may be exceedingly
slow. (Consider the case of aSparseExecuteMatrix, which might have to perform anO(n2) move to
accomodate a new element.)

Available on all butSparseExecuteMatrix objects.

complete_index1_data()
This is a rather internal method, but it is explained here nonetheless.

TheSparseExecuteMatrix class uses a list to indicate the column starts in a linear field of numbers. This
list of column starts, in its original state, is usually incomplete, i.e. does not cover all rows, which allowsO(1)
insertion at the end of the number field. This method makes sure that the column start list is complete. This
is required by certain third-party sparse matrix librariesthat directly read the structure of your sparse matrices.
Within PyLinear, UMFPACK is one such example. Its wrappers call this method automatically, however, so that
you don’t have to worry about this here. But if you are bindingto other sparse matrix libraries, this call might
come in useful.

3.8 Matrix algebra

3.9 Simple computational routines

The following methods are available on PyLinear’sArray types:

sum()
The sum method returns the sum of all non-zero array elements. (Saying “non-zero” sounds stupid, but it
actually means that for sparse arrays, only non-zero elements are considered, and thus represents a guarantee
with respect to asymptotic complexity of the operation.) Returns the sum of all elements in the array.

>>> x = array([[1,2,3],[4,5,6]])
>>> x.sum()
21.0
>>> v = array([1,2,3])
>>> v.sum()
6.0

__iter__()
ForMatrix types, this method returns an iterator whose consecutive values are the rows of the matrix. Note
that this method always returns adenseVector, so it can be slow to use for sparse matrices.

ForVectors, this method returns an iterator whose consecutive valuesare the entries of the vector.

This method is implicitly called infor loops:

26 Chapter 3. The Array types

>>> x = array([[1,2,3],[4,5,6]])
>>> for row in x:
... print row
...
array([1.0, 2.0, 3.0])
array([4.0, 5.0, 6.0])
>>> x = array([1,2,3])
>>> for entry in x:
... print entry
...
1.0
2.0
3.0

indices()
This method works like thekeys() method on a dictionary: It returns an iterator whose values are all indices
of theArray for which the corresponding value is potentially non-zero.(That is, for dense matrices, it returns
each element’s index, while for sparse matrices, only non-zero elements are enumerated.)

>>> x = sparse({0:{4:17, 3:1+2j},3:{2:15}})
>>> for index in x.indices():
... print index
(0, 3)
(0, 4)
(3, 2)

add_scattered(row indices, columnindices, littlematrix)
Modifies the called matrix in-place by adding a the entries ofa little matrix to the already present entries, where
the affected rows and columns are given byrow indices, columnindices.

>>> a = zeros((10,10), Float, SparseBuildMatrix)
>>> b = array([[1,2],[3,4]])
>>> a.add_scattered([4,8], [1,3], b)
>>> a
sparse({4: {1: 1.0, 3: 2.0},

8: {1: 3.0, 3: 4.0}},
shape=(10, 10), flavor=SparseBuildMatrix)

This operation is common in finite element codes.

copy()
Returns an identical copy of the matrix.

>>> a = array([1,2,3])
>>> b = a.copy()
>>> b[0] = 15
>>> a
array([1.0, 2.0, 3.0])
>>> b
array([15.0, 2.0, 3.0])

solve_upper(vector)
If the matrix is an non-singular upper triangular matrix, then a vectorresult is returned that satisfies
matrix*result=vector, i.e. this routine solves the linear system given by the matrix.

If the matrix is not regular upper triangular, then the result of this routine is still a vector, but of undefined
meaning.

3.9. Simple computational routines 27

>>> a = array([[1,2],[0,3]])
>>> b = array([17,12])
>>> v = a.solve_upper(b)
>>> v
array([9.0, 4.0])
>>> a*v
array([17.0, 12.0])

solve_lower(vector)
If the matrix is an non-singular lower triangular matrix, then a vectorresult is returned that satisfies
matrix*result=vector, i.e. this routine solves the linear system given by the matrix.

If the matrix is not regular upper triangular, then the result of this routine is still a vector, but of undefined
meaning.

>>> a = array([[1,0],[3,4]])
>>> b = array([17,12])
>>> v = a.solve_lower(b)
>>> v
array([17.0, -9.75])
>>> a*v
array([17.0, 12.0])

28 Chapter 3. The Array types

CHAPTER

FOUR

Matrix-Free Methods

This chapter introduces the notion of anOperator, which is PyLinear’s way of expressing matrix-free
methods.

4.1 The Operator concept

Everything that has to do withOperator instances is contained in the modulepylinear.operator. Let’s
import it:

>>> from pylinear.array import *
>>> import pylinear.operator as op

classOperator
An Operator is a (typically linear) mapping of one vector to another. A matrix is a particularly prominent
example of this, butOperators are mainly used to represent vector-to-vector mappings for which no matrix
is explicitly stored (or too expensive to compute explicitly). 1

Given its single purpose, anOperator has a pretty simple interface:
shape

Returns a tuple(h,w), which, in analogy to aMatrix, specifies the sizes of the vectors received and returned
by theOperator.

typecode()
Returns the typecode (see 3.1) of theVectors that thisOperator operates on. This is also the typecode of
theVectors returned by the operations of thisOperator. For technical reasons, the two always match.

apply(before, after)
This method operates on theVector before and returns the result of the operation inafter. after needs
to be a properly-sizedVector. Its initial values typically do not matter, but may be used as starting guesses,
for example by iterative solvers. Initializing after to allzeroes is always acceptable.

4.2 Operators Form an Algebra

On top of the simple interface of anOperator, PyLinear provides a layer of convenience functions that facilitate the
creation of derived instances.

For anOperator A, sayingA(x) with a properly sized and typedVector x will return the result of applyingA to
x, by calling theapply method described above.

1 Note, however, that for technical reasonsMatrix classes are not automaticallyOperator instances–they need to be explicitly made into
these, as we will see soon.

29

For twoOperatorsA andB, you may writeA+B to obtain anOperator mapping that will perform the operation
A(x)+B(x). The operator- works in an analogous fashion.

For two Operators A andB, you may writeA*B to obtain anOperator mapping that will perform the com-
posed operationA(B(x)). You may also saya*B or B*a with anOperator B and a scalara, and will obtain an
Operator that performsa*B(x). A unary minus-A returns the negated operator.

4.3 Types of Operators

Matrix-generated operators are the most obvious kind ofOperator, but there are more–and they do not necessarily
correspond to a stored matrix representation.

Each type of operator comes with a constructor class. For example, matrix operators are constructed by calling the
methodmake on the object calledMatrixOperatorin theoperator module. Consider this example:

>>> a = array([[1,2],[3,4]])
>>> a_op = op.MatrixOperator.make(a)
>>> v = array([5,6])
>>> a*v
array([17.0, 39.0])
>>> a_op(v)
array([17.0, 39.0])
>>> a_plus_a_op = a_op+a_op
>>> a_plus_a_op(v)
array([34.0, 78.0])
>>> four_a_op = 2*a_op + a_plus_a_op
>>> four_a_op(v)
array([68.0, 156.0])

classMatrixOperator
A MatrixOperatormakes a matrix into anOperator.

make(matrix)
This static method takes a matrix argument and returns a matrix operator of the corresponding type.

It does not make a copy of the matrix, instead, it just keeps a reference to the given matrix around.

Now that you have seen one constructor class, you have basically seen them all, as they are basically structured in the
same way. What is going to vary from here on down is

• the name of the constructor class and

• the arguments of themake call.

Note however that for technical reasons the instance returned bymake is not an instance of classMatrixOperator;
in fact,MatrixOperator is not even technically a class.

So, let’s dive right in. The next best thing past applying a linear operator directly is applying its inverse. Here are some
operators to achieve that. Of course you could always compute the inverse of the matrix that generates the operator.
There are better ways, however. The simplest one is theLUInverseOperator:
classLUInverseOperator

A LUInverseOperator operates on vectors as the inverse of the dense matrix it is constructed for, by
computing a LU decomposition.

make(matrix)
Returns anOperator whose effect on a vector isA−1, if A is the givenmatrix.

30 Chapter 4. Matrix-Free Methods

This is a static method.

However, for sparse matrices, computing the plain LU decomposition is rarely feasible. More finesse is required to
maintain the sparseness, and thus the tractability, of the operation. That kind of finesse is provided by UMFPACK,
which is also wrapped in anOperator interface in PyLinear.
classUMFPACKOperator

A UMFPACKOperator operates on vectors as the inverse of aSparseExecuteMatrix given to it.

Unlike theCGOperator and theBiCGSTABOperator, it does not perform an iterative, but rather a direct
method. Upon construction, it computes a sparse LU-like decomposition to make actual solving an efficient
process.

make(matrix)
Returns anOperator whose effect on a vector isA−1, if A is the givenmatrix, which has to be a
SparseExecuteMatrix instance.

This is a static method.

Direct methods like the ones above are important tools, but for some types of matrices, one can do even better, by
means of iterative methods, which, as an added benefit, do notrequire a matrix representation of the operation they
are inverting:
classCGOperator

A CGOperator inverts anOperator given to it by means of the Hestenes/Stiefel Conjugate Gradient method.

It requires that the matrix representation of the givenOperator be symmetric (or hermitian for complex
matrices) and positive definite.

make(matrix op, maxit=None, tolerance=1e-12, preconop=None)
Returns aCGOperator that will iteratively approximate the inverse of theOperator matrix op. max it
specifies a bound on the number of iterations taken to reach the goal of decreasing the residual

√

(A ∗ x − b)2

by a factor oftolerance(where, obviously,A is a matrix representation ofmatrix op, b is the vector to which the
CGOperator is applied, andx is the candidate result. If the given target precision is notreached in the given
number of iterations, an exception is thrown.

preconop, finally, is an approximation toA−1 that is applied once each iteration. As a preconditioner, it
should be computationally inexpensive–e.g., if an application of A takesO(n) computations, so should the
preconditioner.

Notice that neithermatrix op nor preconop are needed in matrix form–they are only passed in asOperator
instances.

This is a static method.

classBiCGSTABOperator
A BiCGSTABOperator inverts anOperator given to it by means of the BiCGSTAB method.

It relieves the symmetry requirement of the CG method, but may break down for some matrices.

make(matrix op, maxit=None, tolerance=1e-12, preconop=None)
Returns aBiCGSTABOperator that will iteratively approximate the inverse ofmatrix op. For the parameters,
seeCGOperator.make.

Notice that neithermatrix op nor preconop are needed in matrix form–they are only passed in asOperator
instances.

This is a static method.

One preconditioner that is usable with the above iterative methods is available as part of NumPy:
classSSORPreconditioner

A SSORPreconditioner computes an approximate inverse of the given matrix: LetL be the lower-left
submatrix not including the diagonal, andD the diagonal part. Then, for a given parameterω, the SSOR
preconditioner is given by

(2 − ω)(D + ωL)−H(ωD)(D + ωL)−1,

which can be rather efficiently implemented.

4.3. Types of Operators 31

ω is usually chosen to be one.

It requires the matrix to be symmetric (or hermitian in the complex case).

make(matrix, omega=1)
Returns anOperator whose effect on a vector isA−1, if A is the givenmatrix, which has to be a
SparseExecuteMatrix instance.

This is a static method.

4.4 Implementing your own Operators

TO BE WRITTEN. Refer to the source in ‘src/operator.py’, classLUInverseOperator for an example. FIXME

For information on implementing your own operators in C++, please refer to Chapter 6.

32 Chapter 4. Matrix-Free Methods

CHAPTER

FIVE

Numerics with PyLinear

This chapter introduces the numerical algorithms available in PyLinear.

PyLinear features six different modules of numerical algorithms:

• pylinear.operation uses the previously introduced notion of anOperator and offers several imple-
mentations of the concept. It is also the main module of linear algebra computational routines in PyLinear. It
offers a comprehensive set of linear algebra primitives, such as determinants, decompositions, linear solves,
eigenvalue finding and the like. While theOperator-based functions have been described in Chapter 4, the
conceptually simpler function-call interfaces are described in Section??.

• pylinear.linear_algebra is a compatibility module which aims for complete exchangeability with
NumPy’sLinearAlgebra. It offers a high-level subset ofpylinear.operation with less exposed
detail. See its documentation, which was made available as part of NumPy and numarray.

• pylinear.mpi will provide an interface between MPI and PyLinear, but is not yet written.

• pylinear.toybox serves as a staging area for the above modules and has an unspecified interface that may
change at any time. Look in the source to find experimental algorithms that may solve your problems, but be
warned that these may disappear or change at any time.

5.1 Querying available functionality

Some features in PyLinear depend on outside software (such as BLAS and LAPACK). Many of these software pack-
ages are optional, and may or may not have been available whenPyLinear was compiled. Whether or not this was the
case, PyLinear still promises to function, albeit with reduced functionality.

The following functions in the modulepylinear enable you to query whether certain functionality is available:

has_blas()
Returns abool indicating whether BLAS was available at compile time.

has_lapack()
Returns abool indicating whether LAPACK was available at compile time.

has_arpack()
Returns abool indicating whether ARPACK was available at compile time.

has_umfpack()
Returns abool indicating whether UMFPACK was available at compile time.

has_daskr()
Returns abool indicating whether DASKR was available at compile time.

33

If a given function depends on some external package, the relevant documentation section will state this. Section 2.1
provides a description of these packages.

5.2 Matrix computations

solve_linear_system(matrix, rhs)
Solves the linear systemmatrix*solution=rhs. Uses LU decomposition or UMFPACK, depending on
availability and sparseness ofmatrix.

Returns the vectorsolution.

solve_linear_system_cg(matrix, rhs)
Solves the linear systemmatrix*solution=rhs, wherematrix is symmetric and positive definite. Uses the
Hestenes-Stiefel Conjugate Gradient method. See alsoCGOperator.

cholesky(matrix)
Returns the Cholesky decompositionL of matrix. If we let A be equal tomatrix, thenL satisfiesA = LLH .

lu(matrix)
Returns a tuple(l, u, perm, sign) that represents the LU decomposition ofmatrix.

Let A be equal tomatrix, L equal tol, U equal tou andP equal to a permutation matrix withPi,j = 1 iff
perm[i]=j. Then the LU decomposition satisfiesLU = PA.

See alsomake_permutation_matrix, which turnsperminto a matrix likeP .

eigenvalues(matrix)
Returns a sequence (of unspecified type) that contains all eigenvalues ofmatrix. Requires LAPACK.

diagonalize(matrix)
Returns a tuple(vr, w) of a matrixvr and a vectorw.

Let A be equal tomatrix, V equal tovr, andD equal to au andP equal to a permutation matrix withPi,j = 1
iff perm[i]=j. Then the LU decomposition satisfiesLU = PA.

5.3 Convenient helpers

34 Chapter 5. Numerics with PyLinear

CHAPTER

SIX

Extending PyLinear

This chapter ...

FIXME

6.1 Implementing custom operations

6.2 Implementing custom Operators

35

36

CHAPTER

SEVEN

Differences to NumPy and numarray

This chapter outlines the differences between PyLinear andthe packages Numerical Python and numarray.

Unlike NumPy, PyLinear doesnot allow more than two or less than one index dimension, i.e. it only suports objects
with one and two indices, also known as vectors and matrices.In fact, even vectors and matrices are different types
internally, while NumPy glosses over these differences andmakes them all a singlearray type. This makes sense
since NumPy’s focus is on array-shaped data, such as images and measurements, while PyLinear’s focus is on linear
algebra.

• Ufunc methods are not supported.

• Slices copy, do not return views.

37

38

APPENDIX

A

Acknowledgements

PyLinear owes much to the heroes who fleshed out Numerical Python, numarray, numpy and their corresponding
interfaces. In particular, some parts of this manual are shamelessly borrowed from numarray, as are a few docstrings.

PyLinear was written as part of a Diplom thesis at the Institut für Angewandte Mathematik at Universität Karlsruhe
(TH), Germany. I am grateful that my advisor, Prof. Dr. WillyDörfler, gave me the freedom to choose to write my
own matrix package as part of my thesis. The package was significantly enhanced and released to the public during a
paid research stay at his institute, whose support I gratefully acknowledge.

PyLinear has also benefitted from discussions I had with Roman Geus of the Paul Scherrer Institute in early stages of
the project.

Last, but not least, PyLinear would not even exist if it weren’t for Python and the Boost C++ libraries.

39

40

INDEX

()
operator, 29

*
operator, 30

+
operator, 29

__iter__() (method), 26

absolute() (in module), 24
add() (in module), 24
add_element() (Matrix method), 26
add_scattered() (method), 27
apply() (Operator method), 29
argument() (in module), 24
array, 7
array() (in module), 8
asarray() (in module), 9

BiCGSTABOperator (class in), 31
broadcast, 14
broadcasting, 17
Build

Matrix, Sparse, 7

ceil() (in module), 24
CGOperator (class in), 31
cholesky() (in module), 34
code

type, 8
complete_index1_data() (SparseExecuteMatrix

method), 26
conjugate() (in module), 23
copy() (method), 27
cos() (in module), 23
cosh() (in module), 23
cross

product, 22

Data
Type, 7

data
type, 8

Dense
Matrix, 7
Vector, 7

diagonal() (in module), 16
diagonalize() (in module), 34
dimension, 8
divide() (in module), 24
dtype, 7, 8
dtype (Array attribute), 11

eigenvalues() (in module), 34
Elementwise

Function, 23
empty() (in module), 9
environment variables

LD LIBRARY PATH, 5
Execute

Matrix, Sparse, 7
exp() (in module), 23
eye() (in module), 10

Flavor, 7
flavor (Array attribute), 12
floor() (in module), 24
Function

Elementwise, 23
Universal, 23

H (Matrix attribute), 25
has_arpack() (in module), 33
has_blas() (in module), 33
has_daskr() (in module), 33
has_lapack() (in module), 33
has_umfpack() (in module), 33
hsplit() (in module), 16
hstack() (in module), 10

imaginary (Array attribute), 15
indices() (method), 27

Kronecker
product, 22

41

LD LIBRARY PATH, 5
log() (in module), 23
log10() (in module), 23
lu() (in module), 34
LUInverseOperator (class in), 30

make() (BiCGSTABOperator method), 31
make() (CGOperator method), 31
make() (LUInverseOperator method), 30
make() (MatrixOperator method), 30
make() (SSORPreconditioner method), 32
make() (UMFPACKOperator method), 31
Matrix

Dense, 7
Sparse Build, 7
Sparse Execute, 7

matrix, 7
MatrixOperator (class in), 30
maximum() (in module), 24
minimum() (in module), 24
multiply() (in module), 24

ones() (in module), 9
Operator, 29
Operator (class in), 29
operator

(), 29
*, 30
+, 29

power() (in module), 24
product

cross, 22
Kronecker, 22
Tensor, 22

real (Array attribute), 15

set_element() (method), 25
set_element_past_end() (Matrix method), 26
shape (Array attribute), 11
shape (Operator attribute), 29
sin() (in module), 23
sinh() (in module), 23
solve_linear_system() (in module), 34
solve_linear_system_cg() (in module), 34
solve_lower() (method), 28
solve_upper() (method), 27
sort() (SparseBuildMatrix method), 25
Sparse

Build Matrix, 7
Execute Matrix, 7

sparse() (in module), 9
sqrt() (in module), 23
SSORPreconditioner (class in), 31

subtract() (in module), 24
sum() (method), 26

T (Matrix attribute), 25
take() (in module), 16
tan() (in module), 23
tanh() (in module), 24
Tensor

product, 22
trace() (in module), 25
tri() (in module), 10
Type

Data, 7
type

code, 8
data, 8

typecode, 8
typecode() (Operator method), 29

UMFPACKOperator (class in), 31
Universal

Function, 23

Vector
Dense, 7

vector, 7
vsplit() (in module), 16
vstack() (in module), 10

zeros() (in module), 9

42 Index

	Introduction
	Installation
	Checking prerequisites
	Installing Boost Python
	Installing the Boost UBlas Bindings
	Installing PyLinear

	The Array types
	Types and Flavors
	Creating Arrays
	Pickle support

	Accessing Array Properties
	Accessing Array Data
	Indexing
	Row-wise Access
	Strides
	Broadcasting

	Picking Arrays apart
	Picking apart complex Arrays
	Getting Noncontiguous Parts of an Array

	Basic Array Math
	Generalities on Binary Operations
	Type promotion
	Broadcasting

	Multiplicative (and related) Operators
	Related operators

	Elementwise Functions
	Linear Algebra

	Flavor-specific Functionality
	Matrix algebra
	Simple computational routines

	Matrix-Free Methods
	The Operator concept
	Operators Form an Algebra
	Types of Operators
	Implementing your own Operators

	Numerics with PyLinear
	Querying available functionality
	Matrix computations
	Convenient helpers

	Extending PyLinear
	Implementing custom operations
	Implementing custom Operators

	Differences to NumPy and numarray
	Acknowledgements
	Index

