{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Hello PyOpenCL" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pyopencl as cl\n", "import numpy as np\n", "import numpy.linalg as la\n", "\n", "mf = cl.mem_flags" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook demonstrates the simplest PyOpenCL workflow that touches all essential pieces:\n", "\n", "* Data transfer\n", "* Kernel compilation\n", "* Execution" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "a = np.random.rand(50000).astype(np.float32)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now create a context `ctx` and a command queue `queue`:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ctx = cl.create_some_context()\n", "\n", "queue = cl.CommandQueue(ctx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now allocate a buffer. `Buffer(context, flags, size=None, hostbuf=None)`" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "a_buf = cl.Buffer(ctx, mf.READ_WRITE, size=a.nbytes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then transfer data:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cl.enqueue_copy(queue, a_buf, a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's our kernel source code:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "prg = cl.Program(ctx, \"\"\"\n", " __kernel void twice(__global float *a)\n", " {\n", " int gid = get_global_id(0);\n", " a[gid] = 2*a[gid];\n", " }\n", " \"\"\").build()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the kernel." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prg.twice(queue, a.shape, None, a_buf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copy the data back." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result = np.empty_like(a)\n", "\n", "cl.enqueue_copy(queue, result, a_buf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check the result." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0 128.816\n" ] } ], "source": [ "print(la.norm(result - 2*a), la.norm(a))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1+" } }, "nbformat": 4, "nbformat_minor": 0 }