{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PyOpenCL Parallel Patterns: Map/Elementwise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pyopencl as cl\n", "import pyopencl.array\n", "import pyopencl.clrandom\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ctx = cl.create_some_context()\n", "queue = cl.CommandQueue(ctx)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n = 10**7\n", "a = cl.clrandom.rand(queue, n, np.float32)\n", "b = cl.clrandom.rand(queue, n, np.float32)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A simple 'target application'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We would like to evaluate this linear combination:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "c1 = 5*a + 6*b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A problem with this is that every single operator (all three of them--and easily more for complicated expressions) corresponds to a kernel call, which can lead to high overhead. Let's try and avoid that by stuffing the entire operation into one kernel, in turn saving lots of memory traffic:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from pyopencl.elementwise import ElementwiseKernel" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lin_comb = ElementwiseKernel(ctx,\n", "\n", " \"float a, float *x, float b, float *y, float *c\",\n", "\n", " \"c[i] = a*x[i] + b*y[i]\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c2 = cl.array.empty_like(a)\n", "lin_comb(5, a, 6, b, c2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0\n" ] } ], "source": [ "import numpy.linalg as la\n", "print(la.norm(c1.get() - c2.get()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Timing ElementwiseKernel\n", "\n", "Did this optimization pay off?" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "elapsed: 5.4626686573028564 s\n" ] } ], "source": [ "from time import time\n", "queue.finish()\n", "start_time = time()\n", "\n", "for i in range(10):\n", " c1 = 5*a + 6*b\n", " \n", "queue.finish()\n", "print(\"elapsed: {0} s\".format(time()-start_time))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "elapsed: 2.354213237762451 s\n" ] } ], "source": [ "from time import time\n", "queue.finish()\n", "start_time = time()\n", "\n", "for i in range(10):\n", " lin_comb(5, a, 6, b, c2)\n", " \n", "queue.finish()\n", "print(\"elapsed: {0} s\".format(time()-start_time))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0+" } }, "nbformat": 4, "nbformat_minor": 0 }