{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PyOpenCL Parallel Patterns: Scan/Prefix Sum\n", "\n", "## Setup Code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pyopencl as cl\n", "import pyopencl.array\n", "import pyopencl.clrandom\n", "import numpy as np\n", "import numpy.linalg as la" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ctx = cl.create_some_context()\n", "queue = cl.CommandQueue(ctx)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n = 10**7\n", "x = cl.clrandom.rand(queue, n, np.float64)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setting up the kernel: Compute the prefix sum of squares\n", "\n", "Want to compute the prefix sum of the squares of all entries in `x`.\n", "\n", "First, using `numpy`, as `result1`:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "result1 = np.cumsum(x.get()**2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, using PyOpenCL:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from pyopencl.scan import GenericScanKernel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Syntax:\n", " \n", "GSK(context, dtype, arguments, input_expr, scan_expr using `a` and `b`, neutral, output_statement with `item`)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sknl = GenericScanKernel(ctx, np.float64,\n", " arguments=\"double *y, double *x\",\n", " input_expr=\"x[i]*x[i]\",\n", " scan_expr=\"a+b\", neutral=\"0\",\n", " output_statement=\"y[i] = item\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result2 = cl.array.empty_like(x)\n", "sknl(result2, x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing the outcome" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.00019364830171\n" ] } ], "source": [ "print(la.norm(result2.get() - result1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "More features:\n", "\n", "* Segmented Scan\n", "* Output stencils\n", "* Works on structured types" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0+" } }, "nbformat": 4, "nbformat_minor": 0 }